In [4]:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.legend_handler import HandlerLine2D
import matplotlib.lines as mlines
from scipy.interpolate import interp1d
from scipy.interpolate import griddata
%matplotlib inline
In [8]:
# phi1 phi2
#This is the phi/psi data from the 2CV PBMetaD simulation, no correction
##! FIELDS time phi1 psi1 phi2 psi2 phi3 psi3 metad.bias Ct_phi1 Ct_psi1 Ct_phi2 Ct_psi2 Ct_phi3 Ct_psi3
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
data=np.genfromtxt('wts',comments='#')
#make 2D histogram then replace all zeros with 1e-15
In [19]:
beta=1/8.314e-3/300
hist1, bins1 = np.histogram(np.log(data[:,0])/beta, bins=50,normed=True)
width = 0.7 * (bins1[1] - bins1[0])
center = (bins1[:-1] + bins1[1:]) / 2
fig = plt.figure(figsize=(6,4))
plt.bar(center, hist1, align='center', width=width)
plt.xlabel('$wt value$')
plt.show()
In [20]:
beta=1/8.314e-3/300
hist1, bins1 = np.histogram(np.log(data[:,1])/beta, bins=50,normed=True)
width = 0.7 * (bins1[1] - bins1[0])
center = (bins1[:-1] + bins1[1:]) / 2
fig = plt.figure(figsize=(6,4))
plt.bar(center, hist1, align='center', width=width)
plt.xlabel('$wt value$')
plt.show()
In [ ]: