In [1]:
%matplotlib inline
In [2]:
import numpy as np
import matplotlib.pyplot as plt
import h5py
import ipywidgets
plt.rcParams["figure.figsize"] = (12,10)
In [3]:
scan_file = h5py.File("data-readonly/single_dicom.h5", "r")
scan = scan_file["/scan"].value
In [4]:
scan.shape
Out[4]:
In [5]:
image = scan[19,::,::]
In [6]:
image.shape
Out[6]:
In [7]:
plt.imshow(image)
Out[7]:
In [8]:
plt.imshow(image, extent=[0.0, 1.0, 0., 0.5])
Out[8]:
In [9]:
image.max()
Out[9]:
In [10]:
image2 = image.copy()
image2[:50, :50] = 1268
In [11]:
plt.imshow(image2, extent = [0, 1, 0., 0.5])
Out[11]:
In [12]:
scan.min(), scan.max()
Out[12]:
In [13]:
from matplotlib.colors import LogNorm, PowerNorm
In [14]:
def make_plot(position, gamma, cmap):
image = scan[position, :, :]
plt.imshow(image, cmap=cmap, norm=PowerNorm(gamma))
plt.colorbar()
plt.clim(1, 1747.0)
In [15]:
ipywidgets.interact(make_plot, position = (0, 35, 1), gamma = (0.0, 1.0, 0.01),
cmap = ["viridis", "magma", "plasma", "inferno", "jet",
"doom", "dusk", "arbre", "octarine"]
)
Out[15]:
In [16]:
arr = np.fromfile("data-readonly/michigan_lld/michigan_lld.flt", dtype="f4")
lmi = arr.reshape((4201, 5365), order="F").transpose()
lake = np.ma.MaskedArray(lmi, mask = (lmi == -9999))
In [17]:
plt.imshow(lake)
Out[17]:
In [18]:
lake.min()
Out[18]:
In [19]:
lake.max()
Out[19]:
In [20]:
plt.imshow(lake, cmap="coolwarm")
plt.colorbar()
val = max(np.abs(lake.min()), lake.max())
plt.clim(-val, val)
In [ ]: