In [1]:
#from __future__ import print_function
from os.path import split as pathsplit, join as pathjoin, splitext, isfile, basename
import sys
sys.path.append('../../GBT/filterbank_tools/')
%matplotlib inline
#sys.path.append('/Users/urebbapr/research/ptf/trunk/util')
import numpy as np
import pylab as pl
from file_utils import *
from filterbank import Filterbank as FB, db
from skimage.feature import hog, daisy
In [8]:
f_fillist = 'blc03_guppi_files.txt'
fillist = read_list_from_file(f_fillist)
data = np.array([])
images = []
for i, url_fil in enumerate(fillist):
f_fil = basename(url_fil)
f_filnpy = f_fil + "_rebin.npy"
# check file exists
if isfile(f_fil):
fbin = FB(f_fil)
f, obs = fbin.grab_data()
obs = db(obs)
reduced_obs = np.load(f_filnpy)
hog_feats, hog_image = hog(reduced_obs, orientations=3, pixels_per_cell=(21,16), cells_per_block=(3,3),visualise=True)
print reduced_obs.shape, hog_feats.shape
pl.figure(figsize=(10,6))
pl.subplot(1, 3, 1)
pl.imshow(obs,aspect='auto')
pl.subplot(1, 3, 2)
pl.imshow(reduced_obs,aspect='auto')
pl.subplot(1, 3, 3)
pl.imshow(hog_image,aspect='auto')
if i == 10:
break
# if data.shape[0] == 0:
# data = np.array(hog_feats)
# else:
# data = np.vstack( (data, hog_feats) )
# images.append(reduced_obs)
#pl.figure(figsize=(16,2))
# images = np.array(images)
# print data.shape
In [ ]:
#np.save('blc03.hog216.npy',data)
#np.save('blc03.images.reduced.npy',images)
In [ ]: