In [1]:
lcat <- read.csv("lcat.csv")
lcax <- read.csv("lcax.csv")
as2000 <- read.csv("AgeStr2000.csv")
pop <- read.csv("Pop.csv")
In [2]:
sum(as2000$N);pop$Pop[pop$Year==2000]
In [9]:
mfraito <- c(1.05, 1)/2.05
nbir <- c()
ndea <- c()
npop <- c()
popf <- as2000[1:100, 'Weight']
popm <- as2000[101:200, 'Weight']
plot(popf)
for(yr in 2000:2049) {
drf <- exp(lcax$ax_f+lcax$bx_f*lcat$female[lcat$Year == yr])
drm <- exp(lcax$ax_m+lcax$bx_m*lcat$male[lcat$Year == yr])
dea <- sum(popf*pexp(1, drf) + popf*pexp(1, drf))
popf <- popf*(1-pexp(1, drf))
popm <- popm*(1-pexp(1, drm))
dea <- dea + popf[100] + popm[100]
popf <- c(0, popf[-100])
popm <- c(0, popm[-100])
bir <- max(pop$Pop[pop$Year==(yr+1)] - sum(popf+popm), 0)
bir <- min(bir, 0.010*sum(popf+popm))
popf[1] <- bir*mfraito[2]
popm[1] <- bir*mfraito[1]
nbir <- c(nbir, bir)
ndea <- c(ndea, dea)
npop <- c(npop, sum(popf+popm))
lines(0:99, popf)
}
nbir <- smooth.spline(2001:2050, nbir)$y
ndea <- smooth.spline(2001:2050, ndea)$y
In [ ]:
mfraito <- c(1.05, 1)/2.05
npop <- c()
popf <- as2000[1:100, 'N']
popm <- as2000[101:200, 'N']
plot(popf)
for(yr in 2000:2049) {
drf <- exp(lcax$ax_f+lcax$bx_f*lcat$female[lcat$Year == yr])
drm <- exp(lcax$ax_m+lcax$bx_m*lcat$male[lcat$Year == yr])
popf <- popf*(1-pexp(1, drf))
popm <- popm*(1-pexp(1, drm))
popf <- c(0, popf[-100])
popm <- c(0, popm[-100])
bir <- nbir[yr-1999]
popf[1] <- bir*mfraito[2]
popm[1] <- bir*mfraito[1]
npop <- c(npop, sum(popf+popm))
lines(0:99, popf)
}
In [10]:
nd <- data.frame(Year=2000:2049, N=ndea)
nd <- rbind(nd, c(2050, nd[50,2]))
write.csv(nd, "NumDea.csv", row.names = F)
In [11]:
nb <- data.frame(Year=2000:2049, N=nbir)
nb <- rbind(nb, c(2050, nb[50,2]))
write.csv(nb, "NumBir.csv", row.names = F)
In [ ]:
yr = 2030
p <- 1
ps <- c()
for (i in 1:100) {
dr <- exp(lcax$ax_m+lcax$bx_m*lcat$male[lcat$Year == yr])[i]
p <- p*(1-pexp(1, dr))
ps <- c(ps, p)
}
In [ ]:
hist(splinefun(ps, 0:99)(runif(1000)), breaks=20)
In [ ]:
min(splinefun(ps, 0:99)(runif(1000, 0, ps[80])))