In [1]:
%matplotlib inline
import pandas as pd
In [2]:
from IPython.core.display import HTML
css = open('style-table.css').read() + open('style-notebook.css').read()
HTML('<style>{}</style>'.format(css))
Out[2]:
In [3]:
titles = pd.DataFrame.from_csv('data/titles.csv', index_col=None)
titles.head()
Out[3]:
In [4]:
cast = pd.DataFrame.from_csv('data/cast.csv', index_col=None)
cast.head()
Out[4]:
In [ ]:
In [9]:
titles.groupby(titles['year']//10 *10)['year'].size().plot(kind='bar')
Out[9]:
In [ ]:
In [10]:
titles[titles['title']=='Hamlet'].groupby(titles[titles['title']=='Hamlet']['year']//10 *10)['year'].size().plot(kind='bar')
Out[10]:
In [ ]:
In [18]:
c=cast[(cast['year']>=1950)&(cast['year']<1960)&(cast['n']==1)]
c[c['type']=='actor'].groupby('year').size()
Out[18]:
In [19]:
c[c['type']=='actress'].groupby('year').size()
Out[19]:
In [ ]:
In [ ]:
In [21]:
cast[cast['title'].str.contains("Pink Panther")].groupby('title').size()
Out[21]:
In [ ]:
In [42]:
type(cast[cast['name']=='Frank Oz'].groupby('title'))
Out[42]:
In [40]:
cast[cast['name']=='Frank Oz'].groupby('title').filter(lambda x : len(x)!=1).sort('year')['title'].unique()
Out[40]:
In [ ]:
In [41]:
cast[cast['name']=='Frank Oz'].groupby('character').filter(lambda x : len(x)!=1)['character'].unique()
Out[41]:
In [ ]: