In [5]:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three'])
df['four'] = 'bar'
df['five'] = df['one'] > 0
df
Out[5]:
In [6]:
df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
df2
Out[6]:
In [7]:
dff = pd.DataFrame(np.random.randn(10,3),columns=list('ABC'))
dff.iloc[3:5,0] = np.nan
dff.iloc[4:6,1] = np.nan
dff.iloc[5:8,2] = np.nan
In [17]:
dff.mean()['B':"C"]
pd.Series([1,0],index=list('BC'))
Out[17]:
In [18]:
dff.fillna(pd.Series([1,0],index=list('BC')))
Out[18]:
In [20]:
d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']}
df = pd.DataFrame(d)
df
Out[20]:
In [ ]: