' \n# Dow Jones\nparam = {\n \'q\': ".DJI", # Stock symbol (ex: "AAPL")\n \'i\': "86400", # Interval size in seconds ("86400" = 1 day intervals)\n \'x\': "INDEXDJX", # Stock exchange symbol on which stock is traded (ex: "NASD")\n \'p\': "1Y" # Period (Ex: "1Y" = 1 year)\n}\n# get price data (return pandas dataframe)\ndf = gfc.get_price_data(param)\n#print(df)\n# Open High Low Close Volume\n# 2016-05-17 05:00:00 17531.76 17755.8 17531.76 17710.71 88436105\n# 2016-05-18 05:00:00 17701.46 17701.46 17469.92 17529.98 103253947\n# 2016-05-19 05:00:00 17501.28 17636.22 17418.21 17526.62 79038923\n# 2016-05-20 05:00:00 17514.16 17514.16 17331.07 17435.4 95531058\n# 2016-05-21 05:00:00 17437.32 17571.75 17437.32 17500.94 111992332\n# ... ... ... ... ... ...\n\nparams = [\n # Dow Jones\n {\n \'q\': \'GOOGL\',\n #\'x\': "NASDAQ",\n },\n # NYSE COMPOSITE (DJ)\n {\n \'q\': \'NYA\',\n #\'x\': "INDEXNYSEGIS",\n },\n # S&P 500\n {\n \'q\': \'.INX\',\n #\'x\': "INDEXSP",\n }\n]\nperiod = "1Y"\n# get closing price data (return pandas dataframe)\ndf = gfc.get_closing_data(quotes, period)\nprint(df)\n# .DJI NYA .INX\n# 2016-05-17 17710.71 10332.4261 2066.66\n# 2016-05-18 17529.98 10257.6102 2047.21\n# 2016-05-19 17526.62 10239.6501 2047.63\n# 2016-05-20 17435.40 10192.5015 2040.04\n# 2016-05-21 17500.94 10250.4961 2052.32\n# ... ... ... ...\n'