In [1]:
import gym
import numpy as np
import matplotlib.pyplot as plt
from gym.envs.registration import register
import random as pr
In [2]:
register(
id = 'FrozenLake-v3',
entry_point = 'gym.envs.toy_text:FrozenLakeEnv',
kwargs = {'map_name':"4x4",'is_slippery':False}
)
env = gym.make('FrozenLake-v3')
In [3]:
Q = np.zeros([env.observation_space.n,env.action_space.n])
dis = .99
num_episodes = 2000
rList = []
for i in range(num_episodes):
state = env.reset()
rAll = 0
done = False
e = 1./((i//100)+1)
while not done:
if np.random.rand(1) < e:
action = env.action_space.sample()
else:
action = np.argmax(Q[state,:])
new_state, reward, done, _ = env.step(action)
Q[state, action] = reward + dis * np.max(Q[new_state, :])
state = new_state
rAll += reward
rList.append(rAll)
In [4]:
print("Score over time: " + str(sum(rList) / num_episodes))
print("Final Q-Table Values")
print(Q)
plt.bar(range(len(rList)), rList, color="red",edgecolor='none')
plt.show()
In [ ]: