In [ ]:
import os
import sys
import re # for regex
import math
import json
import pickle
import importlib
from PIL import Image
import numpy as np
from sklearn.datasets import fetch_mldata
import matplotlib.pyplot as plt
%matplotlib inline
# import pycuda.autoinit
from chainer import cuda, Function, FunctionSet, gradient_check, Variable, optimizers
import chainer.functions as F
import SuperClass
import dA
import SdA
import CdA
import sAE
from utils import *
In [ ]:
mnist = fetch_mldata('MNIST original', data_home="~/Hevy/")
mnistdata = mnist.data[0:10000,:].astype(np.float32) / 255.0
In [ ]:
importlib.reload(SuperClass)
importlib.reload(sAE)
n_in = mnistdata.shape[1]
n_hidden = 28**2
sae = sAE.SparseAutoEncoder(n_in, n_hidden, n_epoch=50)
In [ ]:
sae.train(mnistdata)
In [ ]:
W = sae.ae.W.get_value()
draw_weight(W[:,9], (28, 28))
In [ ]: