In [10]:
# coding: utf-8
# In[ ]:
import math
import pickle
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
# In[ ]:
## load data
opened = open('save.dump','rb')
data_all = pickle.load(opened)
#print(data_all.shape)
n_hold = len(data_all)
num_layers= len(data_all[0])
for i_h in range(num_layers):
# prepare for plot 1:self, 0:other
err_other = np.empty(0)
err_self = np.empty(0)
for k_hold in range(n_hold):
err_other = np.append(err_other, data_all[k_hold][i_h]['hist']['other'])
err_self = np.append(err_self, data_all[k_hold][i_h]['hist']['self'] )
# plot err_eopch
k_hold = 0
plt.figure(i_h+100)
x_other = np.r_[0:data_all[k_hold][i_h]['loss']['other'].shape[0]]
x_self = np.r_[0:data_all[k_hold][i_h]['loss']['self'].shape[0]]
plt.plot(x_other, data_all[k_hold][i_h]['loss']['other'], color = "blue")
plt.plot(x_self, data_all[k_hold][i_h]['loss']['self'], color = "red")
# plot histgram
plt.figure(i_h)
plt.hist(err_other, label = "other", normed = True, bins = 20, alpha = 0.5, color = "blue")
plt.hist(err_self, label = "self", normed = True, bins = 20, alpha = 0.5, color = "red")
plt.legend()
print('mean of self error : ' + str(err_self.mean()))
print('mean of other error : ' + str(err_other.mean()))
data_all[0][i_h]['lastpredict']['label'].reshape(-1)
data_all[0][i_h]['lastpredict']['pedict'].reshape(-1)
print()
print(data_all[0][i_h]['lastpredict']['pedict'])
plt.show()
print('finish!')
In [9]:
data_all[0][i_h]['lastpredict']['pedict'].reshape(-1)
Out[9]:
In [ ]: