In [132]:
import csv
import pandas as pd
import numpy as np
import src.Paths as path

import sys
import os

print(os.getcwd())
print(sys.version_info)


C:\Users\Chrisi\Desktop\Studium\BigDataScience\sose17-small-data\python\traffic-prediction
sys.version_info(major=3, minor=5, micro=2, releaselevel='final', serial=0)

In [133]:
path.trajectories_training_file


Out[133]:
'../../new_dataset/training/trajectories(table 5)_training.csv'

In [134]:
training_files = "../../dataset/training/"
links_file = "links (table 3).csv"
routes_file = "routes (table 4).csv"
trajectories_file = "trajectories(table 5)_training.csv"
volume_file = "volume(table 6)_training.csv"
weather_file = "weather (table 7)_training.csv"

routes_df = pd.read_csv(training_files+routes_file)
links_df = pd.read_csv(training_files+links_file)
weather_df = pd.read_csv(training_files+weather_file)
volume_df = pd.read_csv(training_files+volume_file)

training_files = "../../new_dataset/training/"
trajectories_df = pd.read_csv(training_files+trajectories_file)

In [135]:
routes_df


Out[135]:
intersection_id tollgate_id link_seq
0 A 2 110,123,107,108,120,117
1 A 3 110,123,107,108,119,114,118,122
2 B 1 105,100,111,103,116,101,121,106,113
3 B 3 105,100,111,103,122
4 C 1 115,102,109,104,112,111,103,116,101,121,106,113
5 C 3 115,102,109,104,112,111,103,122

In [136]:
from datetime import time
df3 = trajectories_df
df3 = df3.set_index(['intersection_id', 'tollgate_id', 'vehicle_id'])

df3['starting_time'] = pd.to_datetime(df3['starting_time'])
df3 = df3[df3['starting_time'].dt.dayofweek == 1]
df3 = df3[(df3['starting_time'].dt.hour >= 14) & (df3['starting_time'].dt.hour <= 14) & 
          (df3['starting_time'].dt.minute >= 49) & (df3['starting_time'].dt.minute <= 50)]
print( len(df3))
df3


Out[136]:
C 1 1070045 205.36 A 2 1064563 55.66 B 3 1070066 161.04 C 1 1076854 135.73 A 2 1084497 38.69 3 1014161 99.26 1012763 118.68 1057709 71.90 1069044 122.80 B 3 1082678 120.83 A 2 1081411 78.71 1036997 93.25 C 3 1059460 180.40 A 2 1007462 48.53 3 1005569 172.82 C 3 1033579 116.50 A 2 1021625 89.36 3 1020754 68.13 B 1 1045425 144.34 3 1034418 115.95 C 1 1017548 196.71 A 2 1032612 66.18 1014027 12.67 1051728 66.24 C 1 1022536 132.21 A 2 1022842 57.31 1006481 59.04 B 3 1047561 86.82 A 3 1011494 93.25 C 1 1025289 176.43 1029065 131.24 A 3 1029382 148.62 2 1009092 111.42
link_id length width lanes in_top out_top lane_width
0 100 58 3 1 105 111 3
1 101 84 3 1 116 121 3
2 102 131 9 3 115 109 3
3 103 23 12 4 111 122,116 3
4 104 293 9 3 109 112 3
5 105 78 6 2 NaN 100 3
6 106 15 3 1 121 113 3
7 107 34 9 3 123 108 3
8 108 40 9 3 107 119,120 3
9 109 135 9 3 102 104 3
10 110