In [49]:
"""
By starting at the top of the triangle below and moving to adjacent
numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""
# Idea: starting from the bottom, compute maximum sum for each row. Well, the first row is actually useless, but
# from the second row on, get the maximum for each triangle of three numbers, and then use that.
def findTriangleMaxPath(x):
"Returns maximum from one path in triangle from file x."
intLsts = []
with open(x) as f:
for line in f:
int_list = [int(i) for i in line.split()]
intLsts.append(int_list)
# print(intLsts)
# print(len(intLsts))
for i in range(len(intLsts)-1,-1,-1):
# print(i," ",intLsts[i])
for j in range(len(intLsts[i]) - 1): # the last comparison happens at the second-to-last element
# with the last one, so like 1:2, 2:3,..., n-1:n
# print(intLsts[i][j],intLsts[i][j+1])
# print(intLsts[i-1][j])
if intLsts[i][j] + intLsts[i-1][j] > intLsts[i][j+1] + intLsts[i-1][j]:
intLsts[i-1][j] = intLsts[i][j] + intLsts[i-1][j]
else:
intLsts[i-1][j] = intLsts[i][j+1] + intLsts[i-1][j]
return intLsts[0][0]
In [50]:
findTriangleMaxPath("P18_triangle.txt")
Out[50]: