In [1]:
import yaml
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import probplot
from electronfactors import (
create_model, pull_data, fit_give, estimate_population_uncertainty,
create_green_cm
)
In [2]:
run_full_calculation = False # True
In [3]:
green_cm = create_green_cm()
def colour(x, alpha=1):
result = list(green_cm(x))
result[3] = alpha
return result
In [4]:
from matplotlib import rc
rc('font',**{'family':'serif',
'size':'16'})
# rc('text', usetex=True)
In [5]:
# width, length, eqPonA, factor = pull_data(energy=12)
with open("model_cache/12MeV_10app_100ssd.yml", 'r') as file:
cutout_data = yaml.load(file)
label = np.array([key for key in cutout_data])
book_factor = np.array([item[0] == 'P' for i, item in enumerate(label)])
custom_label = label[~book_factor]
width = np.array([cutout_data[key]['width'] for key in custom_label])
length = np.array([cutout_data[key]['length'] for key in custom_label])
factor = np.array([cutout_data[key]['factor'] for key in custom_label])
perimeter = np.pi / 2 * (3*(width + length) - np.sqrt((3*width + length)*(3*length + width)))
area = np.pi / 4 * width * length
eqPonA = perimeter / area
In [6]:
store = np.array([])
mean_diff = np.array([])
individual_std = np.array([])
In [7]:
amount = 8
if run_full_calculation:
n = 100000
else:
n = 100
for j in range(n):
order = np.arange(len(width))
np.random.shuffle(order)
reference = order[0:amount]
reference
check = np.setdiff1d(np.arange(len(width)), reference)
check
give = np.zeros(len(check))
predictions = np.zeros(len(check))
model = create_model(width[reference], eqPonA[reference], factor[reference])
for i, value in enumerate(check):
predictions[i] = model(width[value], eqPonA[value])
give[i] = fit_give(
width[value], eqPonA[value],
width[reference], eqPonA[reference], factor[reference])
percent_prediction_differences = 100*(factor[check] - predictions) / factor[check]
valid = give < 0.5
store = np.append(store, percent_prediction_differences[valid])
mean_diff = np.append(mean_diff, np.mean(percent_prediction_differences[valid]))
individual_std = np.append(individual_std, np.std(percent_prediction_differences[valid]))
In [8]:
bins = np.arange(-2, 2.25, 0.25)
plt.figure(figsize=(6 * 1.618, 6))
plt.hist(store, bins, lw=2, fc=colour(0.55, alpha=0.5))
uncertainty = estimate_population_uncertainty(store)
print("Mean = %0.2f" % (np.mean(store)))
print("Uncertainty = %0.2f" % (uncertainty))
# plt.xlabel(
# r'\% Prediction Difference '
# r'$\left[100 \times \frac{\mbox{measured } - \mbox{ predicted}}{\mbox{measured}} \right]$')
plt.ylabel(r'Frequency')
plt.title(r'Histogram of percent prediction differences of data subsets')
Out[8]:
In [9]:
fig = plt.figure(figsize=(7,4))
ax = fig.add_subplot(111)
probplot(store, plot=ax);
ax.set_title("Normality probability plot for the percent differences")
Out[9]:
In [10]:
np.min(store)
Out[10]:
In [11]:
np.max(store)
Out[11]:
In [12]:
len(store)
Out[12]: