In [1]:
import yaml
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from electronfactors import (
create_green_cm, pull_data, calculate_percent_prediction_differences
)
In [2]:
green_cm = create_green_cm()
In [3]:
from matplotlib import rc
rc('font',**{'family':'serif',
'size':'20'})
# rc('text', usetex=True)
In [4]:
def colour(x, alpha=1):
result = list(green_cm(x))
result[3] = alpha
return result
In [5]:
def pull_data_edit(energy=12):
if energy == 12:
with open("model_cache/12MeV_10app_100ssd.yml", 'r') as file:
cutout_data = yaml.load(file)
label = np.array([key for key in cutout_data])
book_factor = np.array([item[0] == 'P' for i, item in enumerate(label)])
custom_label = label[~book_factor]
width = np.array([cutout_data[key]['width'] for key in custom_label])
length = np.array([cutout_data[key]['length'] for key in custom_label])
factor = np.array([cutout_data[key]['factor'] for key in custom_label])
perimeter = np.pi / 2 * (3*(width + length) - np.sqrt((3*width + length)*(3*length + width)))
area = np.pi / 4 * width * length
eqPonA = perimeter / area
else:
width, length, eqPonA, factor = pull_data(energy=energy)
return width, length, eqPonA, factor
In [6]:
def create_histogram(energy):
width, length, eqPonA, factor = pull_data_edit(energy=energy)
percent_prediction_differences = calculate_percent_prediction_differences(width, eqPonA, factor)
plt.figure(figsize=(6 * 1.618, 6))
bins = np.arange(-1.0, 4/3, 1/3)
dbins = bins[1] - bins[0]
binsTrans = bins - dbins/2
binsTrans = binsTrans.reshape(-1,1)
binNum = np.argmin(abs(binsTrans - percent_prediction_differences),0)
representative_height = np.zeros(len(binNum))
for i in range(len(bins)):
binRef = (binNum == i)
representative_height[binRef] = np.arange(sum(binRef)) + 1
print(len(percent_prediction_differences))
plt.hist(
percent_prediction_differences, bins,
fc=colour(0.6), lw=1)
plt.scatter(
percent_prediction_differences,
representative_height, zorder=2,
s=200, lw=1, c=colour(0.4))
# plt.xlabel(
# r'\% Prediction Difference '
# r'$\left[100 \times \frac{\mbox{measured } - \mbox{ predicted}}{\mbox{measured}} \right]$')
plt.ylabel(r'Frequency')
In [7]:
create_histogram(12)
# plt.savefig('figures/prediction_difference_histogram.png', bbox_inches='tight', dpi=300)
# plt.savefig('figures/prediction_difference_histogram.eps', bbox_inches='tight')
In [8]:
for i in [6, 9, 15, 18]:
create_histogram(i)
In [ ]:
In [ ]: