In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from electronfactors import (
    new_reading, calc_and_display, energy_to_reference_depth, 
    initialise)

In [2]:
data = dict()

6 MeV


In [3]:
energy_to_reference_depth(6)


Out[3]:
array([13])

In [4]:
# Standard insert 10app 6MeV 150MU
np.mean([1.545, 1.547, 1.546, 1.546])


Out[4]:
1.546

In [5]:
# Standard insert 6app 6MeV 150MU
np.mean([1.362, 1.361, 1.362])


Out[5]:
1.3616666666666666

In [6]:
key = 'arbit'

data = initialise(
    key=key, data=data,
    reference=1.362,
    energy=6
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.333, 1.335, 1.332]),
    depth=13
) # point A

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.328]),
    depth=13
) # point B

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.336, 1.336]),
    depth=13
) # point C

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.331]),
    depth=12
) # point C

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.981 | -1.9%
Inverse factor = 1.019 | 1.9%

In [7]:
# Standard insert 6app 6MeV 150MU
np.mean([1.361, 1.362, 1.360])


Out[7]:
1.361

In [8]:
# Standard insert 10app 6MeV 150MU
np.mean([1.545])


Out[8]:
1.5449999999999999

In [ ]: