In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from electronfactors import (
    new_reading, calc_and_display, energy_to_reference_depth, 
    initialise)

In [2]:
data = dict()

6 MeV


In [3]:
energy_to_reference_depth(6)


Out[3]:
array([13])

In [4]:
# Standard insert 10app 6MeV 150MU
np.mean([1.519, 1.519])


Out[4]:
1.5189999999999999

In [5]:
# Standard insert 6app 6MeV 150MU
np.mean([1.342, 1.341])


Out[5]:
1.3414999999999999

In [6]:
key = 'arbit'

data = initialise(
    key=key, data=data,
    reference=1.341,
    energy=6
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.256, 1.256]),
    depth=12
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.252, 1.253]),
    depth=11
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.255, 1.253]),
    depth=13
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.274, 1.274]),
    depth=13
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.274, 1.273]),
    depth=12
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.950 | -5.0%
Inverse factor = 1.053 | 5.3%

In [7]:
# Standard insert 6app 6MeV 150MU
np.mean([1.336, 1.336])


Out[7]:
1.3360000000000001

In [8]:
key = 'arbit'

data = initialise(
    key=key, data=data,
    reference=1.336,
    energy=6
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.270, 1.270]),
    depth=13
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.250]),
    depth=13
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.951 | -4.9%
Inverse factor = 1.052 | 5.2%

In [9]:
# Standard insert 6app 6MeV 150MU
np.mean([1.336, 1.338])


Out[9]:
1.3370000000000002

In [10]:
1.336/1.270


Out[10]:
1.051968503937008

9 MeV


In [11]:
energy_to_reference_depth(9)


Out[11]:
array([20])

In [12]:
# Standard insert 6 app, 9 MeV, 150 MU
np.mean([1.416, 1.418, 1.418])


Out[12]:
1.4173333333333333

In [13]:
key = 'arbit'

data = initialise(
    key=key, data=data,
    reference=1.417,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.419, 1.420]),
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.002 | 0.2%
Inverse factor = 0.998 | -0.2%

In [14]:
# Standard insert 6 app, 9 MeV, 150 MU
np.mean([1.416, 1.417])


Out[14]:
1.4165000000000001

In [15]:
1.417 / 1.4195


Out[15]:
0.9982388164846777

In [ ]: