In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from electronfactors import (
    new_reading, calc_and_display, energy_to_reference_depth, 
    initialise)

In [2]:
data = dict()

18 MeV


In [3]:
energy_to_reference_depth(18)


Out[3]:
array([30])

In [4]:
# Standard insert 10app 18MeV 100MU
np.mean([1.095, 1.096])


Out[4]:
1.0954999999999999

In [5]:
key = 'P13'

data = initialise(
    key=key, data=data,
    reference=1.096,
    energy=18
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.092, 1.093]),
    depth=30
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.997 | -0.3%
Inverse factor = 1.003 | 0.3%

In [6]:
# Standard insert 10app 18MeV 100MU
np.mean([1.096, 1.097])


Out[6]:
1.0965

15 MeV


In [7]:
energy_to_reference_depth(15)


Out[7]:
array([27])

In [8]:
# Standard insert 10app 15MeV 100MU
np.mean([1.076, 1.078])


Out[8]:
1.077

In [9]:
# Standard insert 10app 15MeV 100MU
np.mean([1.076, 1.078])


Out[9]:
1.077

In [10]:
key = '6.7x12cm_15MeV'

data = initialise(
    key=key, data=data,
    reference=1.077,
    energy=15
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.075, 1.076]),
    depth=27
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.999 | -0.1%
Inverse factor = 1.001 | 0.1%

In [11]:
# Standard insert 10app 15MeV 100MU
np.mean([1.076, 1.078])


Out[11]:
1.077

In [12]:
key = '6.7x12cm_15MeV_old'

data = initialise(
    key=key, data=data,
    reference=1.077,
    energy=15
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.088, 1.089]),
    depth=27
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.011 | 1.1%
Inverse factor = 0.989 | -1.1%

In [13]:
# Standard insert 10app 15MeV 100MU
np.mean([1.077, 1.077])


Out[13]:
1.077

6 MeV


In [14]:
energy_to_reference_depth(6)


Out[14]:
array([13])

In [15]:
# Standard insert 10app 6MeV 100MU
np.mean([1.016, 1.016])


Out[15]:
1.016

In [16]:
key = '6.7x12cm_6MeV'

data = initialise(
    key=key, data=data,
    reference=1.016,
    energy=6
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.014, 1.014]),
    depth=13
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.998 | -0.2%
Inverse factor = 1.002 | 0.2%

In [17]:
# Standard insert 10app 6MeV 100MU
np.mean([1.016, 1.015])


Out[17]:
1.0154999999999998

9 MeV


In [18]:
energy_to_reference_depth(9)


Out[18]:
array([20])

In [19]:
# Standard insert 10app 9MeV 100MU
np.mean([1.033, 1.033])


Out[19]:
1.0329999999999999

In [20]:
key = '6.7x12cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.033,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.032, 1.033]),
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.000 | -0.0%
Inverse factor = 1.000 | 0.0%

In [21]:
# Standard insert 10app 9MeV 100MU
np.mean([1.033, 1.033])


Out[21]:
1.0329999999999999

In [ ]:

18 MeV


In [22]:
energy_to_reference_depth(18)


Out[22]:
array([30])

In [23]:
# Standard insert 10app 18MeV 100MU
np.mean([1.095, 1.097])


Out[23]:
1.0960000000000001

In [24]:
key = '6.7x12cm_18MeV'

data = initialise(
    key=key, data=data,
    reference=1.096,
    energy=18
)

data = new_reading(
    key=key, data=data,
    ionisation=np.array([1.094, 1.096]),
    depth=30
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.999 | -0.1%
Inverse factor = 1.001 | 0.1%

In [25]:
# Standard insert 10app 18MeV 100MU
np.mean([1.096, 1.097])


Out[25]:
1.0965

In [ ]: