In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from electronfactors import (
    new_reading, calc_and_display, energy_to_reference_depth, 
    initialise)

In [2]:
data = dict()

9 MeV


In [3]:
energy_to_reference_depth(9)


Out[3]:
array([20])

In [4]:
# Standard insert 10app 9MeV 100MU
np.mean([1.024, 1.025, 1.025])


Out[4]:
1.0246666666666666

In [5]:
key = '5cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0247,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9818, 0.9822],
    depth=20
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9858, 0.9860],
    depth=19
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9864],
    depth=18
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.959 | -4.1%
Inverse factor = 1.042 | 4.2%

In [6]:
key = '5.3x12.5cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0243,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.014, 1.014],
    depth=20
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.016, 1.016],
    depth=19
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.990 | -1.0%
Inverse factor = 1.010 | 1.0%

In [7]:
key = '6.1cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.024,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.008, 1.008],
    depth=19
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.006, 1.006],
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.982 | -1.8%
Inverse factor = 1.018 | 1.8%

In [8]:
# Standard insert 10app 9MeV 100MU
np.mean([1.024, 1.024, 1.024])


Out[8]:
1.024

In [9]:
key = '6.7x12cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.024,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.033, 1.034, 1.034],
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.009 | 0.9%
Inverse factor = 0.991 | -0.9%

In [10]:
key = '7.25cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0242,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.029, 1.029],
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.005 | 0.5%
Inverse factor = 0.995 | -0.5%

In [11]:
key = '8.5x10.9cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0245,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.029, 1.030],
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.005 | 0.5%
Inverse factor = 0.995 | -0.5%

In [12]:
key = '9.5cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0247,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.031, 1.032, 1.032],
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.007 | 0.7%
Inverse factor = 0.993 | -0.7%

In [13]:
# Standard insert 10app 9MeV 100MU
np.mean([1.024, 1.025, 1.025])


Out[13]:
1.0246666666666666

In [14]:
key = '8.3cm_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0267,
    energy=9
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.031, 1.031],
    depth=20
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.004 | 0.4%
Inverse factor = 0.996 | -0.4%

In [15]:
# Standard insert 10app 9MeV 100MU
np.mean([1.026, 1.027, 1.027])


Out[15]:
1.0266666666666666

In [ ]: