In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from electronfactors import (
    new_reading, calc_and_display, energy_to_reference_depth, 
    initialise)

In [2]:
data = dict()

12 MeV


In [3]:
energy_to_reference_depth(12)


Out[3]:
array([25])

In [4]:
# Standard insert 10app 12MeV
np.mean([1.031, 1.031])


Out[4]:
1.0309999999999999

In [5]:
key = 'P3_12MeV'

data = initialise(
    key=key, data=data,
    reference=1.031,
    energy=12    
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.030, 1.031, 1.030],
    depth=25    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.999 | -0.1%
Inverse factor = 1.001 | 0.1%

In [6]:
# Standard insert 10app 12MeV
np.mean([1.031])


Out[6]:
1.0309999999999999

6 MeV


In [7]:
energy_to_reference_depth(6)


Out[7]:
array([13])

In [8]:
# Standard insert 10app 6MeV
np.mean([0.9976, 0.9996, 0.999])


Out[8]:
0.99873333333333336

In [9]:
key = 'P3_6MeV'

data = initialise(
    key=key, data=data,
    reference=0.999,
    energy=6    
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.001, 1.003, 1.001],
    depth=13    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.003 | 0.3%
Inverse factor = 0.997 | -0.3%

In [10]:
# Standard insert 10app 6MeV
np.mean([0.9986])


Out[10]:
0.99860000000000004

9 MeV


In [11]:
energy_to_reference_depth(9)


Out[11]:
array([20])

In [12]:
# Standard insert 10app 9MeV
np.mean([1.011, 1.012, 1.012])


Out[12]:
1.0116666666666665

In [13]:
key = 'P3_9MeV'

data = initialise(
    key=key, data=data,
    reference=1.0115,
    energy=9  
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.013, 1.013],
    depth=20    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.001 | 0.1%
Inverse factor = 0.999 | -0.1%

In [14]:
# Standard insert 10app 9MeV
np.mean([1.011, 1.012])


Out[14]:
1.0114999999999998

15 MeV


In [15]:
energy_to_reference_depth(15)


Out[15]:
array([27])

In [16]:
# Standard insert 10app 15MeV
np.mean([1.046, 1.046])


Out[16]:
1.046

In [17]:
key = 'P3_15MeV'

data = initialise(
    key=key, data=data,
    reference=1.046,
    energy=15  
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.043, 1.044, 1.043],
    depth=30    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.003 | 0.3%
Inverse factor = 0.997 | -0.3%

In [18]:
# Standard insert 10app 15MeV
np.mean([1.046])


Out[18]:
1.046

18 MeV


In [19]:
energy_to_reference_depth(18)


Out[19]:
array([30])

In [20]:
key = 'P3_18MeV'

data = initialise(
    key=key, data=data,
    reference=1.0755,
    energy=15  
)

data = new_reading(
    key=key, data=data,
    ionisation=[1.073, 1.075, 1.076, 1.077, 1.075],
    depth=30    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 1.006 | 0.6%
Inverse factor = 0.994 | -0.6%

In [21]:
# Standard insert 10app 18MeV
np.mean([1.075, 1.076])


Out[21]:
1.0754999999999999