In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from electronfactors import (
    new_reading, calc_and_display)

In [2]:
data = dict()

In [3]:
# Standard insert 10app 6MeV
np.mean([1.003, 1.003])


Out[3]:
1.0029999999999999

In [4]:
key = 'concave_cutout_6MeV'

data[key] = dict()

data[key]['depth'] = []
data[key]['ionisation'] = []
data[key]['reference'] = 1.003
data[key]['energy'] = 6

data = new_reading(
    key=key, data=data,
    ionisation=[0.9826, 0.9824],
    depth=13    
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9798, 0.9802],
    depth=12    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.980 | -2.0%
Inverse factor = 1.021 | 2.1%

In [ ]:


In [5]:
key = 'concave_ellipse_6MeV'

data[key] = dict()

data[key]['depth'] = []
data[key]['ionisation'] = []
data[key]['reference'] = 1.004
data[key]['energy'] = 6

data = new_reading(
    key=key, data=data,
    ionisation=[0.9806, 0.9804],
    depth=13    
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9776, 0.9776],
    depth=12    
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.977 | -2.3%
Inverse factor = 1.024 | 2.4%

In [6]:
# Standard insert 10app 9MeV
np.mean([1.004, 1.004])


Out[6]:
1.004

In [7]:
# Standard insert 10app 9MeV 20mm
np.mean([1.020, 1.020])


Out[7]:
1.02

In [8]:
key = 'concave_cutout_9MeV'

data[key] = dict()

data[key]['depth'] = []
data[key]['ionisation'] = []
data[key]['reference'] = 1.02
data[key]['energy'] = 9

data = new_reading(
    key=key, data=data,
    ionisation=[0.9934, 0.9932],
    depth=20    
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9972, 0.9962],
    depth=19    
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.998],
    depth=18    
)


data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.974 | -2.6%
Inverse factor = 1.026 | 2.6%

In [9]:
key = 'concave_ellipse_9MeV'

data[key] = dict()

data[key]['depth'] = []
data[key]['ionisation'] = []
data[key]['reference'] = 1.02
data[key]['energy'] = 9

data = new_reading(
    key=key, data=data,
    ionisation=[0.9932, 0.9926],
    depth=18   
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9918, 0.9920],
    depth=19 
)

data = new_reading(
    key=key, data=data,
    ionisation=[0.9884],
    depth=20 
)

data[key]['factor'] = calc_and_display(**data[key])


Cutout factor = 0.970 | -3.0%
Inverse factor = 1.031 | 3.1%

In [10]:
# Standard insert 10app 9MeV 20mm
np.mean([1.020])


Out[10]:
1.02

In [ ]: