In [1]:
%pylab inline

import csv, os
from glob import glob

import pandas as pd

import shapely.affinity as af
import shapely.geometry as sh

from equivalent_ellipse import *
from scaled_figures import *

pylab.rcParams['savefig.dpi'] = 254


Populating the interactive namespace from numpy and matplotlib

In [2]:
x_list = list()
y_list = list()

with open('../data/cutout_x.csv', 'r') as x_csvfile:
    with open('../data/cutout_y.csv', 'r') as y_csvfile:
        
        x_reader = csv.reader(x_csvfile, delimiter=',', lineterminator='\n')
        y_reader = csv.reader(y_csvfile, delimiter=',', lineterminator='\n')
        
        for row in x_reader:
            x_list += [row]
  
        for row in y_reader:
            y_list += [row]

            
num_cutouts = len(x_list)


x_array = [0,]*num_cutouts
y_array = [0,]*num_cutouts


for i in range(num_cutouts):

    x_array[i] = array(x_list[i], dtype='float')
    y_array[i] = array(y_list[i], dtype='float')

    
cutout = [0,]*num_cutouts

for i in range(num_cutouts):
    cutout[i] = shapely_cutout(x_array[i],y_array[i])

In [3]:
cutout_dimensions = pd.DataFrame.from_csv('../data/cutout_dimensions.csv')

ellipse_def = transpose(array([cutout_dimensions['a'].values,
                               cutout_dimensions['b'].values,
                               cutout_dimensions['width'].values,
                               cutout_dimensions['length'].values,
                               cutout_dimensions['theta'].values]))

In [4]:
to_measure = loadtxt('cutouts_to_be_measured', dtype=int)
to_measure


Out[4]:
array([112,  57,  20,  14,   3,  38,  22, 104,  83,  19,  66,  35,  58,
       106,   7,  16,  82, 109, 105,  45,  41,  13,  34,  97,   6,  70,
        32,  86,  65,   4,  67,  49,  99,  68,  39,  89,  62])

In [5]:
# Remove cutouts already measured or very close to circles that will be measured
already_measured = (to_measure == 7) | (to_measure == 35) | (to_measure == 114) | (to_measure == 9)
to_measure = to_measure[~already_measured]

In [6]:
# cutouts to measure sorted by width
width_sorted = to_measure[argsort(ellipse_def[to_measure,2])]

In [7]:
toRemove = glob('../figures/optimised/single/*')
for path in toRemove:
    os.remove(path)
    
toRemove = glob('../figures/optimised/joined/*')
for path in toRemove:
    os.remove(path)

In [8]:
j = 0

circle_width = arange(3,11)

scaled_fig_start(12,12)

for i in circle_width:
    
    ellipse = create_ellipse([0,0,i,i,0])
    
    plot(ellipse.exterior.xy[0],ellipse.exterior.xy[1])
    
    text(-5.5,5,'Circles',fontsize=11)
   

scaled_fig_end(12,12)
stringj = "%03d" %(j)

savefig('../figures/optimised/single/'+stringj+'.png')



In [9]:
j = 1

for i in width_sorted:

    ellipse = create_ellipse(ellipse_def[i,:])


    scaled_fig_start(12,12)

    plot(cutout[i].exterior.xy[0],cutout[i].exterior.xy[1])
    plot(ellipse.exterior.xy[0],ellipse.exterior.xy[1],'r--')

    plot(ellipse.centroid.xy[0],ellipse.centroid.xy[1],'go')
    
    
    text(-5.5,5,('Cutout: %d' % (i)),fontsize=11)
    text(-5.5,-5,('Width: %.2f cm' % (ellipse_def[i,2])),fontsize=11)
    text(-5.5,-5.5,('Length: %.2f cm' % (ellipse_def[i,3])),fontsize=11)
    text(3,5,('Ratio: %.2f' % ((ellipse_def[i,2]/ellipse_def[i,3]) )),fontsize=11)
    
    scaled_fig_end(12,12)
    
    stringj = "%03d" %(j)
    
    savefig('../figures/optimised/single/'+stringj+'.png')
    
    j += 1


C:\Users\sbiggs\AppData\Local\Continuum\Anaconda3\lib\site-packages\matplotlib\pyplot.py:412: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_num_figures`).
  max_open_warning, RuntimeWarning)

In [10]:
images = sort(glob('../figures/optimised/single/*'))

In [11]:
j = 0

for i in range(len(images)//2):
    
    a = imread(images[2*i])
    b = imread(images[2*i + 1])

    c = concatenate((a,b),axis=0)
    
    stringj = "%03d" %(j)
    
    imsave('../figures/optimised/joined/'+stringj+'.png',c, dpi=254)
    
    j += 1
    
if mod(len(images),2) == 1:
    
    i += 1
    a = imread(images[2*i])
    b = zeros(shape(a))
    
    c = concatenate((a,b),axis=0)
    
    stringj = "%03d" %(j)
    
    imsave('../figures/optimised/joined/'+stringj+'.png',c, dpi=254)

In [12]:
# See if this can be automated

# OPEN IMAGES IN GIMP "AS LAYER"
# SAVE IMAGES TO GIF "AS ANIMATION" 

# Run imagemagick on resulting file:
# convert -units PixelsPerInch input.gif -density 254 output.pdf