In [20]:
import scipy.stats
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
In [32]:
nat = scipy.stats.norm.rvs(loc=-0.5, scale=0.5, size=1000)
droog = scipy.stats.norm.rvs(loc=0.5, scale=0.5, size=1000)
In [34]:
_ = plt.hist(nat, label='nat')
_ = plt.hist(droog, label='droog')
plt.legend()
Out[34]:
In [ ]:
In [36]:
test = scipy.stats.norm.rvs(loc=0, scale=1, size=1000)
_ = plt.hist(test)
In [39]:
loc_nat, scale_nat = scipy.stats.norm.fit(nat)
loc_droog, scale_droog = scipy.stats.norm.fit(droog)
In [58]:
z_nat = lambda value: (value - loc_nat)/scale_nat
z_droog = lambda value: (value - loc_droog)/scale_droog
In [66]:
isnat = np.abs(z_nat(test)) < np.abs(z_droog(test))
_ = plt.hist(test[isnat], label='nat')
_ = plt.hist(test[~isnat], label='droog')
plt.legend()
Out[66]:
In [68]:
import sklearn.neighbors.NearestNeighbors
In [ ]: