OLS regression model
OLS Regression Results
==============================================================================
Dep. Variable: life R-squared: 0.362
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 98.65
Date: Sat, 24 Sep 2016 Prob (F-statistic): 1.07e-18
Time: 13:57:02 Log-Likelihood: -610.14
No. Observations: 176 AIC: 1224.
Df Residuals: 174 BIC: 1231.
Df Model: 1
Covariance Type: nonrobust
=================================================================================
coef std err t P>|t| [95.0% Conf. Int.]
---------------------------------------------------------------------------------
Intercept 69.6547 0.588 118.550 0.000 68.495 70.814
income_center 0.0006 5.58e-05 9.932 0.000 0.000 0.001
==============================================================================
Omnibus: 19.382 Durbin-Watson: 1.948
Prob(Omnibus): 0.000 Jarque-Bera (JB): 23.222
Skew: -0.877 Prob(JB): 9.06e-06
Kurtosis: 2.698 Cond. No. 1.05e+04
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.05e+04. This might indicate that there are
strong multicollinearity or other numerical problems.