In [1]:
import os

# Change to parent dir to allow importation of modules
if os.path.split(os.getcwd())[1] != 'CITS4404':
    os.chdir('..')

from eLCS.Timer import Timer
from eLCS.OfflineEnvironment import OfflineEnvironment
from eLCS.Algorithm import Algorithm
from eLCS.Constants import cons

"""To run e-LCS, run this module.  

A properly formatted configuration file, including all run parameters must be included with the path to that
file given below.  In this example, the configuration file has been included locally, so only the file name is required.
"""

helpstr = """Failed attempt to run e-LCS.  Please ensure that a configuration file giving all run parameters has been specified."""

# Specify the name and file path for the configuration file.
config_txt = os.path.join('config', 'eLCS_config.yaml')

# Obtain all run parameters from the configuration file and store them in the 'Constants' module.
dataset_path = os.path.join('data', 'eLCS')
cons.setConstants(config_txt, dataset_path=dataset_path)

# Initialize the 'Timer' module which tracks the run time of algorithm and it's different components.
timer = Timer()
cons.referenceTimer(timer)

# Initialize the 'Environment' module which manages the data presented to the algorithm.  While e-LCS learns iteratively (one inistance at a time
env = OfflineEnvironment()
cons.referenceEnv(
    env)  # Passes the environment to 'Constants' (cons) so that it can be easily accessed from anywhere within the code.
cons.parseIterations()  # Identify the maximum number of learning iterations as well as evaluation checkpoints.

# Run the e-LCS algorithm.
eLCS = Algorithm()

# Get the output of runtime parameters from the eLCS
runtimeParams = eLCS.getRuntimeParams()


----------------------------------------------------------------------------
eLCS Code Demo 5: The Complete eLCS Algorithm - Niche GA + Subsumption
----------------------------------------------------------------------------
Environment: Formatting Data... 
DataManagement: Loading Data... data/eLCS/6Multiplexer_Data_Complete.txt
DataManagement: Phenotype Column Location = 6
DataManagement: Number of Attributes = 6
DataManagement: Number of Instances = 64
DataManagement: Analyzing Phenotype...
DataManagement: Phenotype Detected as Discrete.
DataManagement: Detecting Classes...
DataManagement: Following Classes Detected:['0', '1']
Class: 0 count = 32
Class: 1 count = 32
DataManagement: Detecting Attributes...
DataManagement: Identified 6 discrete and 0 continuous attributes.
DataManagement: Characterizing Attributes...
----------------------------------------------------------------------------
eLCS: Initializing Algorithm...
Learning Checkpoints: [5000, 10000]
Maximum Iterations: 10000
Beginning eLCS learning iterations.
------------------------------------------------------------------------------------------------------------------------------------------------------
Epoch: 1	 Iteration: 64	 MacroPop: 30	 MicroPop: 32	 AccEstimate: 0.6875	 AveGen: 0.4895833333333333	 Time: 9.662310282389323e-05
Epoch: 2	 Iteration: 128	 MacroPop: 45	 MicroPop: 64	 AccEstimate: 0.796875	 AveGen: 0.484375	 Time: 0.00020528237024943033
Epoch: 3	 Iteration: 192	 MacroPop: 65	 MicroPop: 98	 AccEstimate: 0.8125	 AveGen: 0.48809523809523797	 Time: 0.00033968687057495117
Epoch: 4	 Iteration: 256	 MacroPop: 73	 MicroPop: 122	 AccEstimate: 0.765625	 AveGen: 0.49453551912568305	 Time: 0.0005188981691996256
Epoch: 5	 Iteration: 320	 MacroPop: 82	 MicroPop: 142	 AccEstimate: 0.78125	 AveGen: 0.5046948356807512	 Time: 0.0007106820742289225
Epoch: 6	 Iteration: 384	 MacroPop: 83	 MicroPop: 166	 AccEstimate: 0.828125	 AveGen: 0.5230923694779115	 Time: 0.0009011427561442057
Epoch: 7	 Iteration: 448	 MacroPop: 99	 MicroPop: 197	 AccEstimate: 0.828125	 AveGen: 0.5346869712351944	 Time: 0.0011168281237284342
Epoch: 8	 Iteration: 512	 MacroPop: 112	 MicroPop: 225	 AccEstimate: 0.859375	 AveGen: 0.5459259259259258	 Time: 0.0013681888580322266
Epoch: 9	 Iteration: 576	 MacroPop: 122	 MicroPop: 249	 AccEstimate: 0.890625	 AveGen: 0.544176706827309	 Time: 0.0016385197639465332
Epoch: 10	 Iteration: 640	 MacroPop: 130	 MicroPop: 275	 AccEstimate: 0.890625	 AveGen: 0.5436363636363634	 Time: 0.0019282023111979166
Epoch: 11	 Iteration: 704	 MacroPop: 135	 MicroPop: 299	 AccEstimate: 0.890625	 AveGen: 0.5457079152731323	 Time: 0.0022458751996358235
Epoch: 12	 Iteration: 768	 MacroPop: 141	 MicroPop: 325	 AccEstimate: 0.90625	 AveGen: 0.5558974358974356	 Time: 0.0025641759236653644
Epoch: 13	 Iteration: 832	 MacroPop: 147	 MicroPop: 347	 AccEstimate: 0.90625	 AveGen: 0.5557156580211334	 Time: 0.0028789242108662925
Epoch: 14	 Iteration: 896	 MacroPop: 154	 MicroPop: 371	 AccEstimate: 0.90625	 AveGen: 0.554806828391734	 Time: 0.0032089551289876304
Epoch: 15	 Iteration: 960	 MacroPop: 154	 MicroPop: 383	 AccEstimate: 0.921875	 AveGen: 0.557006092254134	 Time: 0.0035348018010457356
Epoch: 16	 Iteration: 1024	 MacroPop: 159	 MicroPop: 402	 AccEstimate: 0.9375	 AveGen: 0.5572139303482587	 Time: 0.00386199951171875
Epoch: 17	 Iteration: 1088	 MacroPop: 162	 MicroPop: 418	 AccEstimate: 0.9375	 AveGen: 0.5582137161084529	 Time: 0.004188251495361328
Epoch: 18	 Iteration: 1152	 MacroPop: 164	 MicroPop: 438	 AccEstimate: 0.96875	 AveGen: 0.5566971080669713	 Time: 0.004534069697062174
Epoch: 19	 Iteration: 1216	 MacroPop: 172	 MicroPop: 464	 AccEstimate: 0.96875	 AveGen: 0.5574712643678161	 Time: 0.0049201289812723795
Epoch: 20	 Iteration: 1280	 MacroPop: 177	 MicroPop: 488	 AccEstimate: 0.984375	 AveGen: 0.5590846994535517	 Time: 0.005286423365275065
Epoch: 21	 Iteration: 1344	 MacroPop: 181	 MicroPop: 506	 AccEstimate: 1.0	 AveGen: 0.5606060606060603	 Time: 0.0056540091832478845
Epoch: 22	 Iteration: 1408	 MacroPop: 182	 MicroPop: 526	 AccEstimate: 0.984375	 AveGen: 0.5627376425855509	 Time: 0.006022405624389648
Epoch: 23	 Iteration: 1472	 MacroPop: 185	 MicroPop: 546	 AccEstimate: 0.984375	 AveGen: 0.5625763125763124	 Time: 0.006394116083780924
Epoch: 24	 Iteration: 1536	 MacroPop: 187	 MicroPop: 568	 AccEstimate: 1.0	 AveGen: 0.5622065727699528	 Time: 0.0067829728126525875
Epoch: 25	 Iteration: 1600	 MacroPop: 194	 MicroPop: 590	 AccEstimate: 1.0	 AveGen: 0.5627118644067796	 Time: 0.007170883814493815
Epoch: 26	 Iteration: 1664	 MacroPop: 197	 MicroPop: 608	 AccEstimate: 1.0	 AveGen: 0.5633223684210524	 Time: 0.007562696933746338
Epoch: 27	 Iteration: 1728	 MacroPop: 201	 MicroPop: 632	 AccEstimate: 1.0	 AveGen: 0.5627637130801687	 Time: 0.007993634541829426
Epoch: 28	 Iteration: 1792	 MacroPop: 201	 MicroPop: 652	 AccEstimate: 1.0	 AveGen: 0.5626278118609406	 Time: 0.008413128058115641
Epoch: 29	 Iteration: 1856	 MacroPop: 205	 MicroPop: 672	 AccEstimate: 1.0	 AveGen: 0.5632440476190476	 Time: 0.00886156956354777
Epoch: 30	 Iteration: 1920	 MacroPop: 205	 MicroPop: 692	 AccEstimate: 1.0	 AveGen: 0.5631021194605009	 Time: 0.009288318951924642
Epoch: 31	 Iteration: 1984	 MacroPop: 206	 MicroPop: 716	 AccEstimate: 1.0	 AveGen: 0.5630819366852885	 Time: 0.0097176988919576
Epoch: 32	 Iteration: 2048	 MacroPop: 210	 MicroPop: 738	 AccEstimate: 1.0	 AveGen: 0.5639114724480577	 Time: 0.010137828191121419
Epoch: 33	 Iteration: 2112	 MacroPop: 211	 MicroPop: 762	 AccEstimate: 1.0	 AveGen: 0.5632108486439196	 Time: 0.010558152198791504
Epoch: 34	 Iteration: 2176	 MacroPop: 214	 MicroPop: 786	 AccEstimate: 1.0	 AveGen: 0.5623409669211197	 Time: 0.010987516244252522
Epoch: 35	 Iteration: 2240	 MacroPop: 218	 MicroPop: 806	 AccEstimate: 1.0	 AveGen: 0.5626550868486353	 Time: 0.011417710781097412
Epoch: 36	 Iteration: 2304	 MacroPop: 219	 MicroPop: 824	 AccEstimate: 1.0	 AveGen: 0.5620954692556636	 Time: 0.011849335829416911
Epoch: 37	 Iteration: 2368	 MacroPop: 221	 MicroPop: 846	 AccEstimate: 1.0	 AveGen: 0.5624507486209614	 Time: 0.01229470173517863
Epoch: 38	 Iteration: 2432	 MacroPop: 224	 MicroPop: 867	 AccEstimate: 1.0	 AveGen: 0.5628604382929643	 Time: 0.012768236796061198
Epoch: 39	 Iteration: 2496	 MacroPop: 225	 MicroPop: 887	 AccEstimate: 1.0	 AveGen: 0.5627583615182262	 Time: 0.013213765621185303
Epoch: 40	 Iteration: 2560	 MacroPop: 227	 MicroPop: 899	 AccEstimate: 1.0	 AveGen: 0.5626622172784576	 Time: 0.013652257124582927
Epoch: 41	 Iteration: 2624	 MacroPop: 232	 MicroPop: 921	 AccEstimate: 1.0	 AveGen: 0.561708288092653	 Time: 0.01410826047261556
Epoch: 42	 Iteration: 2688	 MacroPop: 233	 MicroPop: 941	 AccEstimate: 1.0	 AveGen: 0.5616365568544103	 Time: 0.014563576380411784
Epoch: 43	 Iteration: 2752	 MacroPop: 236	 MicroPop: 969	 AccEstimate: 1.0	 AveGen: 0.5615755073959409	 Time: 0.015026525656382243
Epoch: 44	 Iteration: 2816	 MacroPop: 240	 MicroPop: 993	 AccEstimate: 1.0	 AveGen: 0.5605908022826455	 Time: 0.015494402249654133
Epoch: 45	 Iteration: 2880	 MacroPop: 239	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5608333333333335	 Time: 0.016041040420532227
Epoch: 46	 Iteration: 2944	 MacroPop: 237	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5611666666666667	 Time: 0.016560188929239907
Epoch: 47	 Iteration: 3008	 MacroPop: 233	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5606666666666669	 Time: 0.017118350664774577
Epoch: 48	 Iteration: 3072	 MacroPop: 228	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5605000000000001	 Time: 0.017686291535695394
Epoch: 49	 Iteration: 3136	 MacroPop: 228	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5595000000000001	 Time: 0.01818668842315674
Epoch: 50	 Iteration: 3200	 MacroPop: 225	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5598333333333336	 Time: 0.018693423271179198
Epoch: 51	 Iteration: 3264	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5583333333333335	 Time: 0.019193847974141438
Epoch: 52	 Iteration: 3328	 MacroPop: 223	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5588333333333334	 Time: 0.01972452402114868
Epoch: 53	 Iteration: 3392	 MacroPop: 225	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5578333333333334	 Time: 0.0202323317527771
Epoch: 54	 Iteration: 3456	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5569999999999999	 Time: 0.0207235058148702
Epoch: 55	 Iteration: 3520	 MacroPop: 227	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5566666666666668	 Time: 0.021219960848490396
Epoch: 56	 Iteration: 3584	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5571666666666667	 Time: 0.02177496353785197
Epoch: 57	 Iteration: 3648	 MacroPop: 223	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5570000000000003	 Time: 0.02227387030919393
Epoch: 58	 Iteration: 3712	 MacroPop: 221	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5570000000000003	 Time: 0.02278639078140259
Epoch: 59	 Iteration: 3776	 MacroPop: 216	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.556666666666667	 Time: 0.023281057675679524
Epoch: 60	 Iteration: 3840	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5555000000000002	 Time: 0.02377548615137736
Epoch: 61	 Iteration: 3904	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5543333333333336	 Time: 0.024262821674346922
Epoch: 62	 Iteration: 3968	 MacroPop: 220	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5535000000000002	 Time: 0.02478510936101278
Epoch: 63	 Iteration: 4032	 MacroPop: 217	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5530000000000003	 Time: 0.025279895464579264
Epoch: 64	 Iteration: 4096	 MacroPop: 213	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5530000000000003	 Time: 0.02575210730234782
Epoch: 65	 Iteration: 4160	 MacroPop: 216	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5530000000000003	 Time: 0.026224291324615477
Epoch: 66	 Iteration: 4224	 MacroPop: 216	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5525000000000001	 Time: 0.02669122616449992
Epoch: 67	 Iteration: 4288	 MacroPop: 216	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5523333333333335	 Time: 0.027152887980143228
Epoch: 68	 Iteration: 4352	 MacroPop: 213	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5518333333333334	 Time: 0.02763436237970988
Epoch: 69	 Iteration: 4416	 MacroPop: 211	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5516666666666667	 Time: 0.028118797143300376
Epoch: 70	 Iteration: 4480	 MacroPop: 212	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5516666666666667	 Time: 0.028610487778981526
Epoch: 71	 Iteration: 4544	 MacroPop: 210	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5515	 Time: 0.02909760077794393
Epoch: 72	 Iteration: 4608	 MacroPop: 212	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5508333333333334	 Time: 0.02956862449645996
Epoch: 73	 Iteration: 4672	 MacroPop: 208	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5498333333333335	 Time: 0.030052860577901203
Epoch: 74	 Iteration: 4736	 MacroPop: 207	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5498333333333334	 Time: 0.03052495320638021
Epoch: 75	 Iteration: 4800	 MacroPop: 207	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5496666666666666	 Time: 0.03101447820663452
Epoch: 76	 Iteration: 4864	 MacroPop: 209	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5496666666666667	 Time: 0.03147665659586588
Epoch: 77	 Iteration: 4928	 MacroPop: 210	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5500000000000002	 Time: 0.03194220860799154
Epoch: 78	 Iteration: 4992	 MacroPop: 209	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5495000000000002	 Time: 0.03240120808283488
------------------------------------------------------------------------------------------------------------------------------------------------------
Running Population Evaluation after 5000 iterations.
-----------------------------------------------
TRAINING Accuracy Results:-------------
Instance Coverage = 100.0%
Prediction Ties = 0.0%
64 out of 64 instances covered and correctly classified.
Standard Accuracy (Adjusted) = 1.0
Balanced Accuracy (Adjusted) = 1.0
Writing Population Statistical Summary File...
Writing Population as Data File...
Continue Learning...
------------------------------------------------------------------------------------------------------------------------------------------------------
Epoch: 79	 Iteration: 5056	 MacroPop: 210	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5500000000000003	 Time: 0.03318035205205282
Epoch: 80	 Iteration: 5120	 MacroPop: 211	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5500000000000002	 Time: 0.03368388811747233
Epoch: 81	 Iteration: 5184	 MacroPop: 212	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5493333333333336	 Time: 0.03420413335164388
Epoch: 82	 Iteration: 5248	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5491666666666668	 Time: 0.03472434679667155
Epoch: 83	 Iteration: 5312	 MacroPop: 216	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.548666666666667	 Time: 0.03522026538848877
Epoch: 84	 Iteration: 5376	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5480000000000004	 Time: 0.03574220339457194
Epoch: 85	 Iteration: 5440	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5468333333333336	 Time: 0.036248226960500084
Epoch: 86	 Iteration: 5504	 MacroPop: 219	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5448333333333337	 Time: 0.03675115903218587
Epoch: 87	 Iteration: 5568	 MacroPop: 217	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5458333333333337	 Time: 0.03724143902460734
Epoch: 88	 Iteration: 5632	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5463333333333338	 Time: 0.037762892246246335
Epoch: 89	 Iteration: 5696	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5465000000000004	 Time: 0.038280797004699704
Epoch: 90	 Iteration: 5760	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5455000000000002	 Time: 0.038773612181345625
Epoch: 91	 Iteration: 5824	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5443333333333333	 Time: 0.03931528329849243
Epoch: 92	 Iteration: 5888	 MacroPop: 220	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5443333333333332	 Time: 0.03980674743652344
Epoch: 93	 Iteration: 5952	 MacroPop: 219	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5435	 Time: 0.04028711716334025
Epoch: 94	 Iteration: 6016	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5433333333333332	 Time: 0.040801652272542316
Epoch: 95	 Iteration: 6080	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.543	 Time: 0.041311101118723555
Epoch: 96	 Iteration: 6144	 MacroPop: 220	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5418333333333333	 Time: 0.04178612232208252
Epoch: 97	 Iteration: 6208	 MacroPop: 220	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5411666666666668	 Time: 0.04231741825739543
Epoch: 98	 Iteration: 6272	 MacroPop: 219	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5413333333333333	 Time: 0.04281158844629924
Epoch: 99	 Iteration: 6336	 MacroPop: 223	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5406666666666667	 Time: 0.04331352710723877
Epoch: 100	 Iteration: 6400	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5408333333333334	 Time: 0.043810991446177165
Epoch: 101	 Iteration: 6464	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5405000000000002	 Time: 0.04430400530497233
Epoch: 102	 Iteration: 6528	 MacroPop: 221	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.540166666666667	 Time: 0.044827067852020265
Epoch: 103	 Iteration: 6592	 MacroPop: 221	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5403333333333334	 Time: 0.04534453948338826
Epoch: 104	 Iteration: 6656	 MacroPop: 220	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5401666666666669	 Time: 0.045868690808614096
Epoch: 105	 Iteration: 6720	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5406666666666669	 Time: 0.0463552991549174
Epoch: 106	 Iteration: 6784	 MacroPop: 215	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5405000000000002	 Time: 0.04685150782267253
Epoch: 107	 Iteration: 6848	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.540666666666667	 Time: 0.04737387100855509
Epoch: 108	 Iteration: 6912	 MacroPop: 216	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5400000000000004	 Time: 0.047861091295878094
Epoch: 109	 Iteration: 6976	 MacroPop: 215	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5395000000000002	 Time: 0.048347437381744386
Epoch: 110	 Iteration: 7040	 MacroPop: 215	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5393333333333336	 Time: 0.048824405670166014
Epoch: 111	 Iteration: 7104	 MacroPop: 219	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5391666666666668	 Time: 0.049351255098978676
Epoch: 112	 Iteration: 7168	 MacroPop: 218	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5393333333333334	 Time: 0.04982552925745646
Epoch: 113	 Iteration: 7232	 MacroPop: 220	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5391666666666669	 Time: 0.05034949779510498
Epoch: 114	 Iteration: 7296	 MacroPop: 219	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5396666666666668	 Time: 0.05086417595545451
Epoch: 115	 Iteration: 7360	 MacroPop: 219	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5411666666666668	 Time: 0.05135443607966105
Epoch: 116	 Iteration: 7424	 MacroPop: 221	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5413333333333334	 Time: 0.051832207043965656
Epoch: 117	 Iteration: 7488	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5411666666666669	 Time: 0.05234957933425903
Epoch: 118	 Iteration: 7552	 MacroPop: 221	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5420000000000001	 Time: 0.05287361939748128
Epoch: 119	 Iteration: 7616	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.542	 Time: 0.053411448001861574
Epoch: 120	 Iteration: 7680	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5413333333333333	 Time: 0.05391797224680583
Epoch: 121	 Iteration: 7744	 MacroPop: 230	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5418333333333333	 Time: 0.05443344513575236
Epoch: 122	 Iteration: 7808	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5408333333333333	 Time: 0.05497846206029256
Epoch: 123	 Iteration: 7872	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5399999999999998	 Time: 0.05550031264623006
Epoch: 124	 Iteration: 7936	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5393333333333333	 Time: 0.05601682265599569
Epoch: 125	 Iteration: 8000	 MacroPop: 221	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5391666666666667	 Time: 0.05650384028752645
Epoch: 126	 Iteration: 8064	 MacroPop: 223	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5386666666666667	 Time: 0.05701683759689331
Epoch: 127	 Iteration: 8128	 MacroPop: 225	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5386666666666671	 Time: 0.05754026174545288
Epoch: 128	 Iteration: 8192	 MacroPop: 227	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5373333333333333	 Time: 0.058078451951344805
Epoch: 129	 Iteration: 8256	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5363333333333332	 Time: 0.058584296703338624
Epoch: 130	 Iteration: 8320	 MacroPop: 229	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5363333333333332	 Time: 0.05907684564590454
Epoch: 131	 Iteration: 8384	 MacroPop: 231	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5351666666666668	 Time: 0.05958333015441895
Epoch: 132	 Iteration: 8448	 MacroPop: 228	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5333333333333335	 Time: 0.060122636953989665
Epoch: 133	 Iteration: 8512	 MacroPop: 228	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5343333333333334	 Time: 0.060635292530059816
Epoch: 134	 Iteration: 8576	 MacroPop: 225	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5336666666666667	 Time: 0.06116385062535604
Epoch: 135	 Iteration: 8640	 MacroPop: 228	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5341666666666666	 Time: 0.06168475151062012
Epoch: 136	 Iteration: 8704	 MacroPop: 230	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5341666666666668	 Time: 0.06223420699437459
Epoch: 137	 Iteration: 8768	 MacroPop: 230	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5350000000000003	 Time: 0.06281951268513998
Epoch: 138	 Iteration: 8832	 MacroPop: 230	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5353333333333337	 Time: 0.06330643892288208
Epoch: 139	 Iteration: 8896	 MacroPop: 227	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5355000000000003	 Time: 0.06382405757904053
Epoch: 140	 Iteration: 8960	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5345000000000003	 Time: 0.06433498462041219
Epoch: 141	 Iteration: 9024	 MacroPop: 228	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5343333333333334	 Time: 0.06483019987742106
Epoch: 142	 Iteration: 9088	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5341666666666668	 Time: 0.06535965204238892
Epoch: 143	 Iteration: 9152	 MacroPop: 227	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5338333333333333	 Time: 0.06587673823038737
Epoch: 144	 Iteration: 9216	 MacroPop: 230	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5339999999999999	 Time: 0.06638690630594889
Epoch: 145	 Iteration: 9280	 MacroPop: 229	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5336666666666665	 Time: 0.06689819892247519
Epoch: 146	 Iteration: 9344	 MacroPop: 226	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5343333333333332	 Time: 0.06746574640274047
Epoch: 147	 Iteration: 9408	 MacroPop: 223	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5326666666666666	 Time: 0.0679729421933492
Epoch: 148	 Iteration: 9472	 MacroPop: 222	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5326666666666665	 Time: 0.06846379041671753
Epoch: 149	 Iteration: 9536	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5331666666666662	 Time: 0.06897318760553996
Epoch: 150	 Iteration: 9600	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5329999999999998	 Time: 0.06944699684778849
Epoch: 151	 Iteration: 9664	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5323333333333329	 Time: 0.06994860967000326
Epoch: 152	 Iteration: 9728	 MacroPop: 225	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5323333333333331	 Time: 0.0704376737276713
Epoch: 153	 Iteration: 9792	 MacroPop: 225	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5314999999999999	 Time: 0.07095456918080648
Epoch: 154	 Iteration: 9856	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5318333333333333	 Time: 0.07145770788192748
Epoch: 155	 Iteration: 9920	 MacroPop: 223	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5316666666666665	 Time: 0.07197792530059814
Epoch: 156	 Iteration: 9984	 MacroPop: 224	 MicroPop: 1000	 AccEstimate: 1.0	 AveGen: 0.5319999999999999	 Time: 0.07250059445699056
------------------------------------------------------------------------------------------------------------------------------------------------------
Running Population Evaluation after 10000 iterations.
-----------------------------------------------
TRAINING Accuracy Results:-------------
Instance Coverage = 100.0%
Prediction Ties = 0.0%
64 out of 64 instances covered and correctly classified.
Standard Accuracy (Adjusted) = 1.0
Balanced Accuracy (Adjusted) = 1.0
Writing Population Statistical Summary File...
Writing Population as Data File...
Continue Learning...
------------------------------------------------------------------------------------------------------------------------------------------------------
eLCS Run Complete

In [2]:
print(runtimeParams[0])

#  Generate lists for plotting
epoch_list = [i['epoch'] for i in runtimeParams]
iter_list = [i['iteration'] for i in runtimeParams]
acc_list = [i['acc_estimate'] for i in runtimeParams]
ave_gen_list = [i['ave_gen'] for i in runtimeParams]
micro_list = [i['micro_pop'] for i in runtimeParams]
macro_list = [i['macro_pop'] for i in runtimeParams]


{'time': 9.662310282389323e-05, 'macro_pop': 30, 'ave_gen': 0.4895833333333333, 'epoch': 1, 'acc_estimate': 0.6875, 'iteration': 64, 'micro_pop': 32}

In [3]:
%matplotlib inline

import matplotlib
import numpy as np
import matplotlib.pyplot as plt

plt.plot(iter_list, acc_list)


Out[3]:
[<matplotlib.lines.Line2D at 0x7f50229ede80>]

In [4]:
plt.plot(epoch_list, acc_list)


Out[4]:
[<matplotlib.lines.Line2D at 0x7f5020618b70>]

In [5]:
plt.plot(epoch_list, micro_list)


Out[5]:
[<matplotlib.lines.Line2D at 0x7f50205936d8>]

In [6]:
plt.plot(epoch_list, macro_list)


Out[6]:
[<matplotlib.lines.Line2D at 0x7f50204fe748>]

In [7]:
plt.plot(epoch_list, ave_gen_list)


Out[7]:
[<matplotlib.lines.Line2D at 0x7f50204e8390>]

In [ ]: