In [1]:
%matplotlib inline
import gym
import matplotlib
import numpy as np
import sys
from collections import defaultdict
if "../" not in sys.path:
sys.path.append("../")
from lib.envs.blackjack import BlackjackEnv
from lib import plotting
matplotlib.style.use('ggplot')
In [2]:
env = BlackjackEnv()
In [3]:
def make_epsilon_greedy_policy(Q, epsilon, nA):
"""
Creates an epsilon-greedy policy based on a given Q-function and epsilon.
Args:
Q: A dictionary that maps from state -> action-values.
Each value is a numpy array of length nA (see below)
epsilon: The probability to select a random action . float between 0 and 1.
nA: Number of actions in the environment.
Returns:
A function that takes the observation as an argument and returns
the probabilities for each action in the form of a numpy array of length nA.
"""
def policy_fn(observation):
probs = np.ones(nA, dtype=float) * epsilon / nA
best_a = np.argmax(Q[observation])
probs[best_a] = 1.0 - epsilon + epsilon / nA
return probs
return policy_fn
In [4]:
def mc_control_epsilon_greedy(env, num_episodes, discount_factor=1.0, epsilon=0.1):
"""
Monte Carlo Control using Epsilon-Greedy policies.
Finds an optimal epsilon-greedy policy.
Args:
env: OpenAI gym environment.
num_episodes: Nubmer of episodes to sample.
discount_factor: Lambda discount factor.
epsilon: Chance the sample a random action. Float betwen 0 and 1.
Returns:
A tuple (Q, policy).
Q is a dictionary mapping state -> action values.
policy is a function taht takes an observation as an argument and returns
action probabilities
"""
# Keeps track of sum and count of returns for each state
# to calculate an average. We could use an array to save all
# returns (like in the book) but that's memory inefficient.
returns_sum = defaultdict(float)
returns_count = defaultdict(float)
# The final action-value function.
# A nested dictionary that maps state -> (action -> action-value).
Q = defaultdict(lambda: np.zeros(env.action_space.n))
# The policy we're following
policy = make_epsilon_greedy_policy(Q, epsilon, env.action_space.n)
for _ in range(num_episodes):
done = False
episode = []
s = env.reset()
while not done:
probs = policy(s)
action = np.random.choice(np.arange(len(probs)), p=probs)
ns, reward, done, info = env.step(action)
episode.append((s, action, reward))
s = ns
sa_history = list(map(lambda x: (x[0], x[1]), episode))
for s, a in set(sa_history):
first_pos = next(i for i,(xs,xa) in enumerate(sa_history)
if xs == s and xa == a)
G = sum([x[2] for x in episode[first_pos:]])
returns_sum[(s,a)] += G
returns_count[(s,a)] += 1.0
Q[s][a] = returns_sum[(s,a)] / returns_count[(s,a)]
return Q, policy
In [5]:
Q, policy = mc_control_epsilon_greedy(env, num_episodes=500000, epsilon=0.1)
In [6]:
# For plotting: Create value function from action-value function
# by picking the best action at each state
V = defaultdict(float)
for state, actions in Q.items():
action_value = np.max(actions)
V[state] = action_value
plotting.plot_value_function(V, title="Optimal Value Function")
In [ ]: