In [21]:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)


Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

In [22]:
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])

In [23]:
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

In [24]:
y = tf.nn.softmax(tf.matmul(x, W) + b)

In [25]:
y_ = tf.placeholder(tf.float32, [None, 10])

In [26]:
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

In [55]:
train_step = tf.train.GradientDescentOptimizer(0.4).minimize(cross_entropy)

In [56]:
init = tf.initialize_all_variables()

In [57]:
sess = tf.Session()
sess.run(init)

In [58]:
for i in range(5000):
  batch_xs, batch_ys = mnist.train.next_batch(200)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

In [59]:
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

In [60]:
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

In [61]:
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))


0.9227

In [ ]: