Algorithms Exercise 3

Imports


In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np

In [2]:
from IPython.html.widgets import interact


:0: FutureWarning: IPython widgets are experimental and may change in the future.

Character counting and entropy

Write a function char_probs that takes a string and computes the probabilities of each character in the string:

  • First do a character count and store the result in a dictionary.
  • Then divide each character counts by the total number of character to compute the normalized probabilties.
  • Return the dictionary of characters (keys) and probabilities (values).

In [3]:
def char_probs(s):
    """Find the probabilities of the unique characters in the string s.
    
    Parameters
    ----------
    s : str
        A string of characters.
    
    Returns
    -------
    probs : dict
        A dictionary whose keys are the unique characters in s and whose values
        are the probabilities of those characters.
    """
    probs = {}
    for n in range(len(s)):
        if s[n] not in probs:
            probs[s[n]] = 1/len(s)
        else:
            probs[s[n]] += 1/len(s)
            
    return probs

In [4]:
char_probs("aaannn")


Out[4]:
{'a': 0.5, 'n': 0.5}

In [5]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)

The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:

$$H = - \Sigma_i P_i \log_2(P_i)$$

In this expression $\log_2$ is the base 2 log (np.log2), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.

Write a funtion entropy that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict: the values in the dict will be the probabilities.

To compute the entropy, you should:

  • First convert the values (probabilities) of the dict to a Numpy array of probabilities.
  • Then use other Numpy functions (np.log2, etc.) to compute the entropy.
  • Don't use any for or while loops in your code.

In [6]:
def entropy(d):
    """Compute the entropy of a dict d whose values are probabilities."""
    chars = list(d.keys())
    probs = list(d.values())
    
    probs_array = np.asarray(probs)
    
    #print(-np.sum((probs_array) * np.log2(probs_array)))
    return -np.sum((probs_array) * np.log2(probs_array))

In [7]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)

Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.


In [9]:
# YOUR CODE HERE
def interact_charprobs(s):
    print(entropy(char_probs(s)))
    #return entropy(char_probs(s))

interact(interact_charprobs, s="Brian E. Granger");


3.32781953111

In [91]:
assert True # use this for grading the pi digits histogram

In [ ]: