In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
For this problem you are given a raw dataset in the file decay_osc.npz. This file contains three arrays:
tdata: an array of time valuesydata: an array of y valuesdy: the absolute uncertainties (standard deviations) in yYour job is to fit the following model to this data:
$$ y(t) = A e^{-\lambda t} \cos{\omega t + \delta} $$First, import the data using NumPy and make an appropriately styled error bar plot of the raw data.
In [12]:
# YOUR CODE HERE
data = np.load("decay_osc.npz")
t = data["tdata"]
y = data["ydata"]
dy = data["dy"]
plt.errorbar(t, y, dy, fmt=".b")
Out[12]:
In [ ]:
assert True # leave this to grade the data import and raw data plot
Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters:
curve_fit to get a good fit.absolute_sigma=True.
In [24]:
# YOUR CODE HERE
def model(t, A, lambd, omega, sigma):
return A*np.exp(-lambd * t) * np.cos(omega*t) + sigma
theta_best, theta_cov = opt.curve_fit(model, t, y, sigma=dy)
print("A = ", theta_best[0], " +- ", theta_cov[0,0])
print("lambda = ", theta_best[1], " +- ", theta_cov[1,1])
print("omega = ", theta_best[2], " +- ", theta_cov[2,2])
print("sigma = ", theta_best[3], " +- ", theta_cov[3,3])
fitline = model(t, theta_best[0], theta_best[1], theta_best[2], theta_best[3])
plt.errorbar(t, y, dy, fmt=".b")
plt.plot(t, fitline, color="r")
plt.xlabel("t")
plt.ylabel("y")
Out[24]:
In [22]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors
In [ ]: