In [1]:
import os
import numpy as np
import cv2
from sklearn.externals import joblib
In [2]:
os.getcwd()
Out[2]:
In [3]:
from image_transformation import apply_image_transformation
In [4]:
os.listdir('.')
Out[4]:
In [5]:
clf= joblib.load('./modules/model-serialized-logistic.pkl')
In [5]:
os.chdir('./snapshots/')
In [7]:
l=os.listdir('.')
In [6]:
from matplotlib import pyplot as plt
In [10]:
l=sorted(l)
In [7]:
%matplotlib inline
In [16]:
str=[]
for i in l:
frame= cv2.imread(i)
frame= apply_image_transformation(frame)
frame_flattened=frame.flatten()
predicted_labels= clf.predict(np.reshape(frame_flattened,(1,frame_flattened.size)))
predicted_label = predicted_labels[0]
str.append(predicted_label)
print(str)
In [8]:
cap = cv2.VideoCapture(0)
In [9]:
ret, frame = cap.read()
In [10]:
gray = frame#cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cv2.rectangle(gray,(250,250),(450,450),(0,255,0),3)
In [11]:
plt.imshow(gray)
Out[11]:
In [12]:
detect= gray[250:450,250:450]
In [13]:
plt.imshow(detect)
Out[13]:
In [14]:
fr= apply_image_transformation(detect)
frame_flattened=frame.flatten()
predicted_labels= clf.predict(np.reshape(frame_flattened,(1,frame_flattened.size)))
predicted_label = predicted_labels[0]
print(predicted_label)
In [15]:
fr= apply_image_transformation(detect)
In [ ]: