In [2]:
from WindAdapter import get_universe

# 读取指数成分股
hs300_comp = get_universe('000300.SH', date='20170103', output_weight=True)
print hs300_comp


[2017-06-05 15:18:16] - WindAdapter - CRITICAL - Exception in function get_universe -- get_universe() got an unexpected keyword argument 'output_weight'
None

In [1]:
from WindAdapter import factor_help, factor_details_help

factor_help()
factor_details_help()


Welcome to use Wind Quant API for Python (WindPy)!
You can use w.menu to help yourself to create commands(WSD,WSS,WST,WSI,WSQ,...)!

COPYRIGHT (C) 2016 WIND HONGHUI INFORMATION & TECHKNOLEWDGE CO., LTD. ALL RIGHTS RESERVED.
IN NO CIRCUMSTANCE SHALL WIND BE RESPONSIBLE FOR ANY DAMAGES OR LOSSES CAUSED BY USING WIND QUANT API FOR Python.
[2017-05-24 08:32:34] - WindAdapter - INFO - Factors that are available to query
Out[1]:
Data_Dict explanation
name
MV 总市值(不可回测)
PB 市净率PB(LF)
STDQ 区间换手率(基准 自由流通股本)
EquityGrowth_YoY 净资产(同比增长率)
ROE 净资产收益率(平均)
ProfitGrowth_Qr_YoY 单季度 净利润同比增长率
TO_adj 区间日均换手率(基准 自由流通股本)
RETURN 区间涨跌幅
GrossProfit 毛利
EP 扣除非经常性损益后的净利润(TTM)
SP 营业总收入(TTM)
OHLCV 开盘价、最高价、最低价、收盘价、成交量
OPEN 开盘价
HIGH 最高价
LOW 最低价
CLOSE 收盘价
VOLUME 成交量
SW_C1 股票所属申万一级行业代码
SW_C2 股票所属申万二级行业代码
INDUSTRY_WEIGHT_C1 申万一级行业所占指数权重
INDUSTRY_WEIGHT_C2 申万二级行业所占指数权重
[2017-05-24 08:32:34] - WindAdapter - INFO - Factors(details) that are available to query
Out[1]:
Data_Dict api indicator priceadj unit explanation type
name
MV wsd mkt_cap F 1.0 总市值(不可回测) 规模
PB wsd pb_lf F NaN 市净率PB(LF) 价值
STDQ wss turn_free_per NaN NaN 区间换手率(基准 自由流通股本) 流动性
EquityGrowth_YoY wsd yoy_equity NaN NaN 净资产(同比增长率) 成长
ROE wsd roe_avg NaN NaN 净资产收益率(平均) 盈利
ProfitGrowth_Qr_YoY wsd qfa_yoyprofit NaN NaN 单季度 净利润同比增长率 盈利
TO_adj wss avg_turn_free_per NaN NaN 区间日均换手率(基准 自由流通股本) 流动性
RETURN wss pct_chg_per NaN NaN 区间涨跌幅 估值
GrossProfit wsd grossmargin NaN 100000000.0 毛利 盈利
EP wsd deductedprofit_ttm NaN 100000000.0 扣除非经常性损益后的净利润(TTM) 盈利
SP wsd gr_ttm NaN 100000000.0 营业总收入(TTM) 盈利
OHLCV wsd open,high,low,close,volume NaN NaN 开盘价、最高价、最低价、收盘价、成交量 技术
OPEN wsd open F NaN 开盘价 技术
HIGH wsd high F NaN 最高价 技术
LOW wsd low F NaN 最低价 技术
CLOSE wsd close F NaN 收盘价 技术
VOLUME wsd volume F NaN 成交量 技术
SW_C1 wsd indexcode_sw NaN NaN 股票所属申万一级行业代码 基本信息
SW_C2 wsd indexcode_sw NaN NaN 股票所属申万二级行业代码 基本信息
INDUSTRY_WEIGHT_C1 NaN NaN NaN NaN 申万一级行业所占指数权重 基本信息
INDUSTRY_WEIGHT_C2 NaN NaN NaN NaN 申万二级行业所占指数权重 基本信息

In [6]:
from WindAdapter import factor_load
from WindAdapter.enums import OutputFormat

# 读取 2014年上半年 000001.SZ和000002.SZ的PB数据, 并保存成csv格式(默认数据频率为月频,数据格式为multi-index DataFrame)
#factor_load('2014-01-01', '2014-07-10', 'PB', sec_id=['000001.SZ', '000002.SZ'], is_index=False, save_file='PB.csv')

# 读取全市场 2016年1月的每日收盘价,并保存成pickle格式
#factor_load('2014-01-01', '2014-07-10', 'close', sec_id='fullA', is_index=True, freq='D', save_file='close.pkl')

# 读取沪深300成分股从2014年1月至3月,频率为每月(freq=M)的季度(tenor='1Q')收益, 并保存成csv格式
#factor_load('2014-01-01', '2014-03-31', 'return', sec_id='000300.SH', is_index=True, freq='M', tenor='1Q',
#            save_file='HS300_return_1Q.csv').head()

# 读取指数成分的行业权重分布
factor_load('2013-02-01', '2015-01-01', 'INDUSTRY_WEIGHT_C1', sec_id='000300.SH', save_file='300.csv')

# 同时读取PB和MV数据
factor_load('2014-01-01', '2014-07-10', ['PB', 'MV'], sec_id=['000001.SZ', '000002.SZ'], is_index=False,
            reset_col_names=True)


[2017-05-24 08:40:17] - WindAdapter - INFO - Loading factor data INDUSTRY_WEIGHT_C1
[2017-05-24 08:40:30] - WindAdapter - INFO - factor data INDUSTRY_WEIGHT_C1 is loaded 
[2017-05-24 08:40:30] - WindAdapter - CRITICAL - Data saved in 300.csv
Out[6]:
factor
date secID
2013-02-28 801010.SI 1.03
801020.SI 6.22
801030.SI 3.42
801040.SI 1.64
801050.SI 6.12
801080.SI 0.82
801110.SI 2.52
801120.SI 5.35
801130.SI 0.20
801150.SI 4.69
801160.SI 2.53
801170.SI 2.58
801180.SI 6.36
801200.SI 1.64
801210.SI 0.14
801230.SI 0.25
2013-03-29 801010.SI 0.99
801020.SI 6.08
801030.SI 3.83
801040.SI 1.67
801050.SI 5.93
801080.SI 1.02
801110.SI 2.67
801120.SI 5.58
801130.SI 0.21
801150.SI 5.26
801160.SI 2.80
801170.SI 2.66
801180.SI 6.11
801200.SI 1.67
... ... ...
2014-11-28 801790.SI 16.28
801880.SI 3.85
801890.SI 2.16
2014-12-31 801010.SI 0.52
801020.SI 2.79
801030.SI 2.37
801040.SI 1.42
801050.SI 3.28
801080.SI 1.56
801110.SI 2.80
801120.SI 4.23
801130.SI 0.32
801150.SI 4.71
801160.SI 4.06
801170.SI 2.89
801180.SI 5.08
801200.SI 1.98
801210.SI 0.21
801230.SI 0.45
801710.SI 0.73
801720.SI 4.66
801730.SI 1.74
801740.SI 2.19
801750.SI 2.09
801760.SI 2.98
801770.SI 1.39
801780.SI 20.12
801790.SI 19.77
801880.SI 3.35
801890.SI 2.28

489 rows × 1 columns


In [1]:
from WindAdapter import reset_data_dict_path

reset_data_dict_path(path='C:\\data_dict_perso.csv', path_type_abs=True)


2017-04-28 13:58:40,135 - WindAdapter - CRITICAL - Reset path of data dict to C:\data_dict_perso.csv
Welcome to use Wind Quant API for Python (WindPy)!
You can use w.menu to help yourself to create commands(WSD,WSS,WST,WSI,WSQ,...)!

COPYRIGHT (C) 2016 WIND HONGHUI INFORMATION & TECHKNOLEWDGE CO., LTD. ALL RIGHTS RESERVED.
IN NO CIRCUMSTANCE SHALL WIND BE RESPONSIBLE FOR ANY DAMAGES OR LOSSES CAUSED BY USING WIND QUANT API FOR Python.

In [5]:


In [ ]: