____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 19, 3) 0
____________________________________________________________________________________________________
input_2 (InputLayer) (None, 19, 20) 0
____________________________________________________________________________________________________
merge_1 (Merge) (None, 19, 23) 0 input_1[0][0]
input_2[0][0]
____________________________________________________________________________________________________
lstm_1 (LSTM) (None, 19, 20) 3520 merge_1[0][0]
____________________________________________________________________________________________________
reshape_1 (Reshape) (None, 1, 380) 0 lstm_1[0][0]
____________________________________________________________________________________________________
embedding (Dense) (None, 1, 100) 38100 reshape_1[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (None, 1, 50) 5050 embedding[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 1, 50) 2550 dense_1[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 1, 50) 2550 dense_2[0][0]
____________________________________________________________________________________________________
dense_4 (Dense) (None, 1, 1) 51 dense_3[0][0]
====================================================================================================
Total params: 51,821
Trainable params: 51,821
Non-trainable params: 0
____________________________________________________________________________________________________
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_4 (InputLayer) (None, 19, 20) 0
____________________________________________________________________________________________________
lstm_3 (LSTM) (None, 19, 20) 3280 input_4[0][0]
____________________________________________________________________________________________________
reshape_3 (Reshape) (None, 1, 380) 0 lstm_3[0][0]
____________________________________________________________________________________________________
noise_input (InputLayer) (None, 1, 100) 0
____________________________________________________________________________________________________
morphology_embedding (Dense) (None, 1, 100) 38100 reshape_3[0][0]
____________________________________________________________________________________________________
merge_2 (Merge) (None, 1, 100) 0 noise_input[0][0]
morphology_embedding[0][0]
____________________________________________________________________________________________________
dense_7 (Dense) (None, 1, 57) 5757 merge_2[0][0]
____________________________________________________________________________________________________
dense_8 (Dense) (None, 1, 57) 3306 dense_7[0][0]
____________________________________________________________________________________________________
reshape_5 (Reshape) (None, 19, 3) 0 dense_8[0][0]
====================================================================================================
Total params: 50,443
Trainable params: 50,443
Non-trainable params: 0
____________________________________________________________________________________________________
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
noise_input (InputLayer) (None, 1, 100) 0
____________________________________________________________________________________________________
dense_9 (Dense) (None, 1, 380) 38380 noise_input[0][0]
____________________________________________________________________________________________________
dense_10 (Dense) (None, 1, 380) 144780 dense_9[0][0]
____________________________________________________________________________________________________
dense_11 (Dense) (None, 1, 380) 144780 dense_10[0][0]
____________________________________________________________________________________________________
reshape_6 (Reshape) (None, 19, 20) 0 dense_11[0][0]
____________________________________________________________________________________________________
lambda_1 (Lambda) (None, 19, 20) 0 reshape_6[0][0]
====================================================================================================
Total params: 327,940
Trainable params: 327,940
Non-trainable params: 0
____________________________________________________________________________________________________
====================
Level #0
====================
Epoch #0
After 100 iterations
Discriminator Loss = -14.2382354736
Generator_Loss: -3.69740653038
2
After 100 iterations
Discriminator Loss = -13.7442436218
Generator_Loss: -1.89559566975
3
After 100 iterations
Discriminator Loss = -15.7646398544
Generator_Loss: -5.58012962341
4
After 100 iterations
Discriminator Loss = -15.4411010742
Generator_Loss: -2.52191305161
5
After 100 iterations
Discriminator Loss = -15.2003860474
Generator_Loss: -5.48935079575
6
After 100 iterations
Discriminator Loss = -12.3217191696
Generator_Loss: -4.74316692352
7
After 100 iterations
Discriminator Loss = -12.1488056183
Generator_Loss: -7.16605472565
8
After 100 iterations
Discriminator Loss = -11.830160141
Generator_Loss: -1.03904104233
9
After 100 iterations
Discriminator Loss = -11.6392364502
Generator_Loss: -6.39512014389
10
After 100 iterations
Discriminator Loss = -11.3513021469
Generator_Loss: -1.63504087925
11
After 100 iterations
Discriminator Loss = -15.0059127808
Generator_Loss: -0.366696745157
12
After 100 iterations
Discriminator Loss = -10.1584272385
Generator_Loss: -6.79331588745
13
After 100 iterations
Discriminator Loss = -12.7716503143
Generator_Loss: -5.34430503845
14
After 100 iterations
Discriminator Loss = -11.4451560974
Generator_Loss: -6.30458927155
15
After 100 iterations
Discriminator Loss = -10.7940979004
Generator_Loss: -5.87987136841
16
After 100 iterations
Discriminator Loss = -12.2619934082
Generator_Loss: -0.959267616272
17
After 100 iterations
Discriminator Loss = -13.3002824783
Generator_Loss: 3.01012063026
18
After 100 iterations
Discriminator Loss = -12.7603206635
Generator_Loss: -0.864161252975
19
After 100 iterations
Discriminator Loss = -11.1565246582
Generator_Loss: -6.26010942459
20
After 100 iterations
Discriminator Loss = -10.9535188675
Generator_Loss: -3.99812245369
21
After 100 iterations
Discriminator Loss = -11.9022083282
Generator_Loss: -2.2596988678
22
After 100 iterations
Discriminator Loss = -11.7515306473
Generator_Loss: -7.31093788147
23
After 100 iterations
Discriminator Loss = -10.6445484161
Generator_Loss: -8.05163860321
24
After 100 iterations
Discriminator Loss = -10.3215379715
Generator_Loss: -5.47783088684
25
Level #0 Epoch #0 Batch #25
After 100 iterations
Discriminator Loss = -10.6872310638
Generator_Loss: -4.37649679184
26
After 100 iterations
Discriminator Loss = -10.9743595123
Generator_Loss: -7.20958375931
27
After 100 iterations
Discriminator Loss = -11.0246725082
Generator_Loss: -3.98718523979
28
After 100 iterations
Discriminator Loss = -11.30311203
Generator_Loss: -2.98023509979
29
After 100 iterations
Discriminator Loss = -11.2656459808
Generator_Loss: -5.19827365875
30
After 100 iterations
Discriminator Loss = -14.3320446014
Generator_Loss: -1.75694787502
31
After 100 iterations
Discriminator Loss = -13.2075080872
Generator_Loss: -1.02454304695
32
After 100 iterations
Discriminator Loss = -13.4137172699
Generator_Loss: -0.847509264946
33
After 100 iterations
Discriminator Loss = -12.2826910019
Generator_Loss: -1.67963767052
34
After 100 iterations
Discriminator Loss = -10.9705181122
Generator_Loss: -7.04352283478
35
After 100 iterations
Discriminator Loss = -11.1028518677
Generator_Loss: -5.16757392883
36
After 100 iterations
Discriminator Loss = -12.7657461166
Generator_Loss: -5.59972143173
37
After 100 iterations
Discriminator Loss = -9.83433437347
Generator_Loss: -4.78792619705
38
After 100 iterations
Discriminator Loss = -11.7467746735
Generator_Loss: -8.28816223145
39
After 100 iterations
Discriminator Loss = -9.94538211823
Generator_Loss: -12.0971603394
40
After 100 iterations
Discriminator Loss = -13.2280483246
Generator_Loss: -3.04316997528
41
After 100 iterations
Discriminator Loss = -10.4019823074
Generator_Loss: -6.06558465958
42
After 100 iterations
Discriminator Loss = -10.1470928192
Generator_Loss: -8.37930202484
43
After 100 iterations
Discriminator Loss = -10.4547834396
Generator_Loss: -6.12994289398
44
After 100 iterations
Discriminator Loss = -9.57119655609
Generator_Loss: -7.75011444092
45
After 100 iterations
Discriminator Loss = -9.69299888611
Generator_Loss: -5.12514352798
46
After 100 iterations
Discriminator Loss = -11.178855896
Generator_Loss: -3.78681445122
47
After 100 iterations
Discriminator Loss = -9.37148761749
Generator_Loss: -4.72969293594
48
After 100 iterations
Discriminator Loss = -11.8976182938
Generator_Loss: -4.81758213043
49
After 100 iterations
Discriminator Loss = -11.7604579926
Generator_Loss: -6.39258050919
50
Level #0 Epoch #0 Batch #50
After 100 iterations
Discriminator Loss = -10.9327707291
Generator_Loss: -5.70575714111
51
After 100 iterations
Discriminator Loss = -10.0011110306
Generator_Loss: -7.84747982025
52
After 100 iterations
Discriminator Loss = -13.411986351
Generator_Loss: 1.71344876289
53
After 100 iterations
Discriminator Loss = -12.6349906921
Generator_Loss: -0.404529243708
54
After 100 iterations
Discriminator Loss = -9.50937652588
Generator_Loss: -0.459711462259
55
After 100 iterations
Discriminator Loss = -10.0337629318
Generator_Loss: -4.34375572205
56
After 100 iterations
Discriminator Loss = -12.2447328568
Generator_Loss: -3.63270568848
57
After 100 iterations
Discriminator Loss = -10.8586874008
Generator_Loss: -6.31936693192
58
After 100 iterations
Discriminator Loss = -9.59605503082
Generator_Loss: -5.41495752335
59
After 100 iterations
Discriminator Loss = -10.2996797562
Generator_Loss: -8.40937995911
60
After 100 iterations
Discriminator Loss = -11.2986383438
Generator_Loss: -0.174078673124
61
After 100 iterations
Discriminator Loss = -9.51883125305
Generator_Loss: -6.54342269897
62
After 100 iterations
Discriminator Loss = -14.7169599533
Generator_Loss: -5.64821958542
63
After 100 iterations
Discriminator Loss = -11.000087738
Generator_Loss: 0.0721491575241
64
After 100 iterations
Discriminator Loss = -9.25157737732
Generator_Loss: -6.67536830902
65
After 100 iterations
Discriminator Loss = -9.83593845367
Generator_Loss: -11.3090553284
66
After 100 iterations
Discriminator Loss = -11.9845724106
Generator_Loss: -5.67347574234
67
After 100 iterations
Discriminator Loss = -11.2854127884
Generator_Loss: -0.186619907618
68
After 100 iterations
Discriminator Loss = -9.99443626404
Generator_Loss: -6.33344697952
69
After 100 iterations
Discriminator Loss = -12.5954780579
Generator_Loss: -1.89248490334
70
After 100 iterations
Discriminator Loss = -11.7959337234
Generator_Loss: -0.777896523476
71
After 100 iterations
Discriminator Loss = -10.326125145
Generator_Loss: -3.91578388214
72
After 100 iterations
Discriminator Loss = -9.55623817444
Generator_Loss: -3.34179139137
73
After 100 iterations
Discriminator Loss = -9.57527828217
Generator_Loss: -0.159311443567
74
After 100 iterations
Discriminator Loss = -8.80860137939
Generator_Loss: -8.69229793549
75
Level #0 Epoch #0 Batch #75
After 100 iterations
Discriminator Loss = -9.90274333954
Generator_Loss: -1.82362270355
76
After 100 iterations
Discriminator Loss = -9.57532978058
Generator_Loss: -6.51833248138
77
After 100 iterations
Discriminator Loss = -10.5961771011
Generator_Loss: -5.02942180634
78
After 100 iterations
Discriminator Loss = -9.2793712616
Generator_Loss: -7.76452159882
79
After 100 iterations
Discriminator Loss = -11.052696228
Generator_Loss: -9.57262039185
80
After 100 iterations
Discriminator Loss = -9.38230133057
Generator_Loss: -7.85399913788
81
After 100 iterations
Discriminator Loss = -8.41446304321
Generator_Loss: -8.45682048798
82
After 100 iterations
Discriminator Loss = -7.59083366394
Generator_Loss: -4.58839607239
83
After 100 iterations
Discriminator Loss = -8.43841362
Generator_Loss: -11.4100236893
84
After 100 iterations
Discriminator Loss = -10.3394947052
Generator_Loss: -16.3781833649
85
After 100 iterations
Discriminator Loss = -10.4670448303
Generator_Loss: -1.06459629536
86
After 100 iterations
Discriminator Loss = -10.1561126709
Generator_Loss: -7.75417900085
87
After 100 iterations
Discriminator Loss = -11.2598056793
Generator_Loss: -5.17526531219
88
After 100 iterations
Discriminator Loss = -9.5054101944
Generator_Loss: -9.37708091736
89
After 100 iterations
Discriminator Loss = -9.68503093719
Generator_Loss: -6.06930541992
90
After 100 iterations
Discriminator Loss = -9.77408981323
Generator_Loss: -6.39395856857
91
After 100 iterations
Discriminator Loss = -10.3027820587
Generator_Loss: -9.76529216766
92
After 100 iterations
Discriminator Loss = -8.27371883392
Generator_Loss: -5.69399404526
93
After 100 iterations
Discriminator Loss = -9.13221073151
Generator_Loss: -7.27712631226
94
After 100 iterations
Discriminator Loss = -10.0003671646
Generator_Loss: -7.09442996979
95
After 100 iterations
Discriminator Loss = -7.58400535583
Generator_Loss: -12.5773096085
96
After 100 iterations
Discriminator Loss = -10.699010849
Generator_Loss: -2.04175329208
97
After 100 iterations
Discriminator Loss = -8.37799358368
Generator_Loss: -7.10191965103
98
After 100 iterations
Discriminator Loss = -11.2104682922
Generator_Loss: -13.6704158783
99
After 100 iterations
Discriminator Loss = -9.71674060822
Generator_Loss: -4.81488180161
100
Level #0 Epoch #0 Batch #100
After 100 iterations
Discriminator Loss = -8.94493865967
Generator_Loss: -2.69774723053
101
After 100 iterations
Discriminator Loss = -9.83259487152
Generator_Loss: -6.65986251831
102
After 100 iterations
Discriminator Loss = -8.54524326324
Generator_Loss: -6.7202129364
103
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-6-b84be581c68b> in <module>()
13 train_one_by_one=train_one_by_one,
14 train_loss=train_loss,
---> 15 verbose=True)
/Users/pavanramkumar/Projects/34-HGGAN/McNeuron/train_one_by_one.py in train_model(training_data, n_levels, n_nodes, input_dim, n_epochs, batch_size, n_batch_per_epoch, d_iters, lr_discriminator, lr_generator, weight_constraint, rule, train_one_by_one, train_loss, verbose)
353 d_model.train_on_batch([X_locations,
354 X_prufer],
--> 355 y)
356
357 list_d_loss.append(disc_loss)
/Users/pavanramkumar/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in train_on_batch(self, x, y, sample_weight, class_weight)
1308 sample_weight=sample_weight,
1309 class_weight=class_weight,
-> 1310 check_batch_axis=True)
1311 if self.uses_learning_phase and not isinstance(K.learning_phase, int):
1312 ins = x + y + sample_weights + [1.]
/Users/pavanramkumar/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in _standardize_user_data(self, x, y, sample_weight, class_weight, check_batch_axis, batch_size)
1042 check_array_lengths(x, y, sample_weights)
1043 check_loss_and_target_compatibility(y, self.loss_functions, self.internal_output_shapes)
-> 1044 if self.stateful and batch_size:
1045 if x[0].shape[0] % batch_size != 0:
1046 raise ValueError('In a stateful network, '
/Users/pavanramkumar/anaconda2/lib/python2.7/site-packages/keras/engine/topology.pyc in stateful(self)
2110 @property
2111 def stateful(self):
-> 2112 return any([(hasattr(layer, 'stateful') and layer.stateful) for layer in self.layers])
2113
2114 def reset_states(self):
KeyboardInterrupt: