____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_3 (InputLayer) (None, 19, 3) 0
____________________________________________________________________________________________________
input_4 (InputLayer) (None, 19, 20) 0
____________________________________________________________________________________________________
merge_2 (Merge) (None, 19, 23) 0 input_3[0][0]
input_4[0][0]
____________________________________________________________________________________________________
lambda_3 (Lambda) (None, 20, 106) 0 merge_2[0][0]
____________________________________________________________________________________________________
reshape_4 (Reshape) (None, 1, 2120) 0 lambda_3[0][0]
____________________________________________________________________________________________________
dense_12 (Dense) (None, 1, 200) 424200 reshape_4[0][0]
____________________________________________________________________________________________________
dense_13 (Dense) (None, 1, 50) 10050 dense_12[0][0]
____________________________________________________________________________________________________
dense_14 (Dense) (None, 1, 10) 510 dense_13[0][0]
____________________________________________________________________________________________________
dense_15 (Dense) (None, 1, 1) 11 dense_14[0][0]
====================================================================================================
Total params: 434,771
Trainable params: 434,771
Non-trainable params: 0
____________________________________________________________________________________________________
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
noise_input (InputLayer) (None, 1, 100) 0
____________________________________________________________________________________________________
dense_16 (Dense) (None, 1, 100) 10100 noise_input[0][0]
____________________________________________________________________________________________________
dense_17 (Dense) (None, 1, 100) 10100 dense_16[0][0]
____________________________________________________________________________________________________
dense_18 (Dense) (None, 1, 50) 5050 dense_17[0][0]
____________________________________________________________________________________________________
dense_19 (Dense) (None, 1, 57) 2907 dense_18[0][0]
____________________________________________________________________________________________________
reshape_5 (Reshape) (None, 19, 3) 0 dense_19[0][0]
====================================================================================================
Total params: 28,157
Trainable params: 28,157
Non-trainable params: 0
____________________________________________________________________________________________________
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
noise_input (InputLayer) (None, 1, 100) 0
____________________________________________________________________________________________________
dense_20 (Dense) (None, 1, 100) 10100 noise_input[0][0]
____________________________________________________________________________________________________
dense_21 (Dense) (None, 1, 100) 10100 dense_20[0][0]
____________________________________________________________________________________________________
dense_22 (Dense) (None, 1, 380) 38380 dense_21[0][0]
____________________________________________________________________________________________________
reshape_6 (Reshape) (None, 19, 20) 0 dense_22[0][0]
____________________________________________________________________________________________________
lambda_4 (Lambda) (None, 19, 20) 0 reshape_6[0][0]
====================================================================================================
Total params: 58,580
Trainable params: 58,580
Non-trainable params: 0
____________________________________________________________________________________________________
====================
Epoch #0
After 20 iterations
Discriminator Loss = 0.00578188430518
Generator_Loss: 4.94541358948
2
Level #1 Epoch #0 Batch #2
After 20 iterations
Discriminator Loss = 0.00334420101717
Generator_Loss: 4.61161088943
3
After 20 iterations
Discriminator Loss = 0.00521979667246
Generator_Loss: 4.19804954529
4
Level #1 Epoch #0 Batch #4
After 20 iterations
Discriminator Loss = 0.00925806630403
Generator_Loss: 4.2492275238
5
After 20 iterations
Discriminator Loss = 0.0127445515245
Generator_Loss: 4.25526094437
6
Level #1 Epoch #0 Batch #6
After 20 iterations
Discriminator Loss = 0.00676031690091
Generator_Loss: 4.58628416061
7
After 20 iterations
Discriminator Loss = 0.00652778567746
Generator_Loss: 5.03641223907
8
Level #1 Epoch #0 Batch #8
After 20 iterations
Discriminator Loss = 0.0171141792089
Generator_Loss: 4.59877157211
9
After 20 iterations
Discriminator Loss = 0.0163528993726
Generator_Loss: 4.16571140289
10
Level #1 Epoch #0 Batch #10
After 20 iterations
Discriminator Loss = 0.0215438138694
Generator_Loss: 4.29655408859
11
After 20 iterations
Discriminator Loss = 0.0293504390866
Generator_Loss: 4.27063846588
12
Level #1 Epoch #0 Batch #12
After 20 iterations
Discriminator Loss = 0.0221139639616
Generator_Loss: 4.4227514267
13
After 20 iterations
Discriminator Loss = 0.020547952503
Generator_Loss: 4.06455135345
14
Level #1 Epoch #0 Batch #14
After 20 iterations
Discriminator Loss = 0.0167981125414
Generator_Loss: 4.46633958817
15
After 20 iterations
Discriminator Loss = 0.0284128002822
Generator_Loss: 4.06940937042
16
Level #1 Epoch #0 Batch #16
After 20 iterations
Discriminator Loss = 0.01208930742
Generator_Loss: 4.80876064301
17
After 20 iterations
Discriminator Loss = 0.0383573099971
Generator_Loss: 3.98427629471
18
Level #1 Epoch #0 Batch #18
After 20 iterations
Discriminator Loss = 0.0410992726684
Generator_Loss: 3.97968101501
19
After 20 iterations
Discriminator Loss = 0.032060008496
Generator_Loss: 4.17113494873
20
Level #1 Epoch #0 Batch #20
After 20 iterations
Discriminator Loss = 0.0345502570271
Generator_Loss: 3.77483868599
21
After 20 iterations
Discriminator Loss = 0.0383487530053
Generator_Loss: 3.73535013199
22
Level #1 Epoch #0 Batch #22
After 20 iterations
Discriminator Loss = 0.0509651303291
Generator_Loss: 3.41515827179
23
After 20 iterations
Discriminator Loss = 0.0255360081792
Generator_Loss: 3.68147349358
24
Level #1 Epoch #0 Batch #24
After 20 iterations
Discriminator Loss = 0.0227290745825
Generator_Loss: 4.07283401489
25
After 20 iterations
Discriminator Loss = 0.0280267056078
Generator_Loss: 3.81276679039
26
Level #1 Epoch #0 Batch #26
After 20 iterations
Discriminator Loss = 0.0257836747915
Generator_Loss: 3.59795308113
27
After 20 iterations
Discriminator Loss = 0.0308765377849
Generator_Loss: 3.72284436226
28
Level #1 Epoch #0 Batch #28
After 20 iterations
Discriminator Loss = 0.0297300126404
Generator_Loss: 3.72177195549
29
After 20 iterations
Discriminator Loss = 0.0257949922234
Generator_Loss: 3.3686709404
30
Level #1 Epoch #0 Batch #30
After 20 iterations
Discriminator Loss = 0.0599372014403
Generator_Loss: 3.47441387177
31
After 20 iterations
Discriminator Loss = 0.0474324524403
Generator_Loss: 3.27217340469
32
Level #1 Epoch #0 Batch #32
After 20 iterations
Discriminator Loss = 0.0542302019894
Generator_Loss: 3.3868367672
33
After 20 iterations
Discriminator Loss = 0.035142801702
Generator_Loss: 3.49864149094
34
Level #1 Epoch #0 Batch #34
After 20 iterations
Discriminator Loss = 0.0398532561958
Generator_Loss: 3.72054004669
35
After 20 iterations
Discriminator Loss = 0.0335755944252
Generator_Loss: 3.53353142738
36
Level #1 Epoch #0 Batch #36
After 20 iterations
Discriminator Loss = 0.0394624471664
Generator_Loss: 3.65101408958
37
After 20 iterations
Discriminator Loss = 0.0401676744223
Generator_Loss: 3.48075914383
38
Level #1 Epoch #0 Batch #38
After 20 iterations
Discriminator Loss = 0.0427804775536
Generator_Loss: 3.31207227707
39
After 20 iterations
Discriminator Loss = 0.0418871082366
Generator_Loss: 3.32000303268
40
Level #1 Epoch #0 Batch #40
After 20 iterations
Discriminator Loss = 0.0484003387392
Generator_Loss: 3.57293605804
41
After 20 iterations
Discriminator Loss = 0.0697116404772
Generator_Loss: 3.38402152061
42
Level #1 Epoch #0 Batch #42
After 20 iterations
Discriminator Loss = 0.0569115020335
Generator_Loss: 3.17083859444
43
After 20 iterations
Discriminator Loss = 0.0520328879356
Generator_Loss: 3.29041743279
44
Level #1 Epoch #0 Batch #44
After 20 iterations
Discriminator Loss = 0.0468531027436
Generator_Loss: 3.36793971062
45
After 20 iterations
Discriminator Loss = 0.0529979355633
Generator_Loss: 3.15945959091
46
Level #1 Epoch #0 Batch #46
After 20 iterations
Discriminator Loss = 0.0696685090661
Generator_Loss: 3.41576242447
47
After 20 iterations
Discriminator Loss = 0.0562179759145
Generator_Loss: 3.24944472313
48
Level #1 Epoch #0 Batch #48
After 20 iterations
Discriminator Loss = 0.0689142122865
Generator_Loss: 3.16449904442
49
After 20 iterations
Discriminator Loss = 0.0813009664416
Generator_Loss: 3.38608145714
50
Level #1 Epoch #0 Batch #50
After 20 iterations
Discriminator Loss = 0.0755718201399
Generator_Loss: 3.31128907204
51
After 20 iterations
Discriminator Loss = 0.0600487031043
Generator_Loss: 3.17938423157
52
Level #1 Epoch #0 Batch #52
After 20 iterations
Discriminator Loss = 0.0652266442776
Generator_Loss: 3.301851511
53
After 20 iterations
Discriminator Loss = 0.0479856431484
Generator_Loss: 3.43509888649
54
Level #1 Epoch #0 Batch #54
After 20 iterations
Discriminator Loss = 0.0531590394676
Generator_Loss: 3.44364142418
55
After 20 iterations
Discriminator Loss = 0.0574959814548
Generator_Loss: 3.4021525383
56
Level #1 Epoch #0 Batch #56
After 20 iterations
Discriminator Loss = 0.0463576465845
Generator_Loss: 3.37271690369
57
After 20 iterations
Discriminator Loss = 0.0519929341972
Generator_Loss: 3.32930469513
58
Level #1 Epoch #0 Batch #58
After 20 iterations
Discriminator Loss = 0.0720115602016
Generator_Loss: 3.10994958878
59
After 20 iterations
Discriminator Loss = 0.0575288534164
Generator_Loss: 2.92473864555
60
Level #1 Epoch #0 Batch #60
After 20 iterations
Discriminator Loss = 0.0583100505173
Generator_Loss: 3.11942648888
61
After 20 iterations
Discriminator Loss = 0.0779906585813
Generator_Loss: 3.16290950775
62
Level #1 Epoch #0 Batch #62
After 20 iterations
Discriminator Loss = 0.0580578967929
Generator_Loss: 3.08583164215
63
After 20 iterations
Discriminator Loss = 0.0522646345198
Generator_Loss: 3.41352415085
64
Level #1 Epoch #0 Batch #64
After 20 iterations
Discriminator Loss = 0.0456255823374
Generator_Loss: 3.37404108047
65
After 20 iterations
Discriminator Loss = 0.0429240912199
Generator_Loss: 3.3665099144
66
Level #1 Epoch #0 Batch #66
After 20 iterations
Discriminator Loss = 0.0512379482388
Generator_Loss: 3.36542010307
67
After 20 iterations
Discriminator Loss = 0.0454839430749
Generator_Loss: 3.29834961891
68
Level #1 Epoch #0 Batch #68
After 20 iterations
Discriminator Loss = 0.0485068634152
Generator_Loss: 3.2528116703
69
After 20 iterations
Discriminator Loss = 0.0479245111346
Generator_Loss: 3.38194012642
70
Level #1 Epoch #0 Batch #70
After 20 iterations
Discriminator Loss = 0.0733167305589
Generator_Loss: 3.25080275536
71
After 20 iterations
Discriminator Loss = 0.0664338618517
Generator_Loss: 2.90355920792
72
Level #1 Epoch #0 Batch #72
After 20 iterations
Discriminator Loss = 0.0601026639342
Generator_Loss: 3.02462029457
73
After 20 iterations
Discriminator Loss = 0.0630407184362
Generator_Loss: 3.17610526085
74
Level #1 Epoch #0 Batch #74
After 20 iterations
Discriminator Loss = 0.0596892535686
Generator_Loss: 3.12014746666
75
After 20 iterations
Discriminator Loss = 0.0715815126896
Generator_Loss: 3.19248175621
76
Level #1 Epoch #0 Batch #76
After 20 iterations
Discriminator Loss = 0.0969163477421
Generator_Loss: 3.23963928223
77
After 20 iterations
Discriminator Loss = 0.0817943438888
Generator_Loss: 2.9458823204
78
Level #1 Epoch #0 Batch #78
After 20 iterations
Discriminator Loss = 0.132594570518
Generator_Loss: 2.60464549065
79
After 20 iterations
Discriminator Loss = 0.163471981883
Generator_Loss: 2.48429560661
80
Level #1 Epoch #0 Batch #80
After 20 iterations
Discriminator Loss = 0.178124815226
Generator_Loss: 2.69254684448
81
After 20 iterations
Discriminator Loss = 0.183334708214
Generator_Loss: 2.58551096916
82
Level #1 Epoch #0 Batch #82
After 20 iterations
Discriminator Loss = 0.216981187463
Generator_Loss: 2.10451245308
83
After 20 iterations
Discriminator Loss = 0.203779265285
Generator_Loss: 2.03086352348
84
Level #1 Epoch #0 Batch #84
After 20 iterations
Discriminator Loss = 0.180399104953
Generator_Loss: 2.10557389259
85
After 20 iterations
Discriminator Loss = 0.148913502693
Generator_Loss: 2.30483818054
86
Level #1 Epoch #0 Batch #86
After 20 iterations
Discriminator Loss = 0.124614737928
Generator_Loss: 2.06919527054
87
After 20 iterations
Discriminator Loss = 0.149318829179
Generator_Loss: 2.43744063377
88
Level #1 Epoch #0 Batch #88
After 20 iterations
Discriminator Loss = 0.128387436271
Generator_Loss: 2.41745305061
89
After 20 iterations
Discriminator Loss = 0.152216151357
Generator_Loss: 2.4243144989
90
Level #1 Epoch #0 Batch #90
After 20 iterations
Discriminator Loss = 0.12767842412
Generator_Loss: 2.26506328583
91
After 20 iterations
Discriminator Loss = 0.133638650179
Generator_Loss: 2.3935174942
92
Level #1 Epoch #0 Batch #92
After 20 iterations
Discriminator Loss = 0.124248988926
Generator_Loss: 2.30245900154
93
After 20 iterations
Discriminator Loss = 0.182002022862
Generator_Loss: 2.34414172173
94
Level #1 Epoch #0 Batch #94
After 20 iterations
Discriminator Loss = 0.164967834949
Generator_Loss: 1.94014561176
95
After 20 iterations
Discriminator Loss = 0.167450010777
Generator_Loss: 1.77290081978
96
Level #1 Epoch #0 Batch #96
After 20 iterations
Discriminator Loss = 0.16069111228
Generator_Loss: 1.82592594624
97
After 20 iterations
Discriminator Loss = 0.14251576364
Generator_Loss: 2.28393483162
98
Level #1 Epoch #0 Batch #98
After 20 iterations
Discriminator Loss = 0.128854349256
Generator_Loss: 2.45792245865
99
After 20 iterations
Discriminator Loss = 0.132300034165
Generator_Loss: 2.46575546265
100
Level #1 Epoch #0 Batch #100
After 20 iterations
Discriminator Loss = 0.125992715359
Generator_Loss: 2.14024043083
101
After 20 iterations
Discriminator Loss = 0.144498497248
Generator_Loss: 2.1790266037
102
Level #1 Epoch #0 Batch #102
After 20 iterations
Discriminator Loss = 0.130382105708
Generator_Loss: 2.30898571014
103
After 20 iterations
Discriminator Loss = 0.216525405645
Generator_Loss: 1.80482184887
104
Level #1 Epoch #0 Batch #104
After 20 iterations
Discriminator Loss = 0.242820084095
Generator_Loss: 1.83648264408
105
After 20 iterations
Discriminator Loss = 0.219879612327
Generator_Loss: 2.00168728828
106
Level #1 Epoch #0 Batch #106
After 20 iterations
Discriminator Loss = 0.200325518847
Generator_Loss: 2.1240978241
107
After 20 iterations
Discriminator Loss = 0.16264308989
Generator_Loss: 2.14555335045
108
Level #1 Epoch #0 Batch #108
After 20 iterations
Discriminator Loss = 0.145507916808
Generator_Loss: 2.08428144455
109
After 20 iterations
Discriminator Loss = 0.184400260448
Generator_Loss: 2.41374850273
110
Level #1 Epoch #0 Batch #110
After 20 iterations
Discriminator Loss = 0.125213965774
Generator_Loss: 2.46759700775
111
After 20 iterations
Discriminator Loss = 0.114971138537
Generator_Loss: 2.6810233593
112
Level #1 Epoch #0 Batch #112
After 20 iterations
Discriminator Loss = 0.132135972381
Generator_Loss: 2.54129123688
113
After 20 iterations
Discriminator Loss = 0.137656629086
Generator_Loss: 2.85505366325
114
Level #1 Epoch #0 Batch #114
After 20 iterations
Discriminator Loss = 0.166368991137
Generator_Loss: 2.71090388298
115
After 20 iterations
Discriminator Loss = 0.133697524667
Generator_Loss: 2.8334069252
116
Level #1 Epoch #0 Batch #116
After 20 iterations
Discriminator Loss = 0.141681179404
Generator_Loss: 2.40741014481
117
After 20 iterations
Discriminator Loss = 0.131566733122
Generator_Loss: 2.36653375626
118
Level #1 Epoch #0 Batch #118
After 20 iterations
Discriminator Loss = 0.177111566067
Generator_Loss: 2.42803001404
119
After 20 iterations
Discriminator Loss = 0.176703378558
Generator_Loss: 2.18589305878
120
Level #1 Epoch #0 Batch #120
After 20 iterations
Discriminator Loss = 0.185295984149
Generator_Loss: 2.08425378799
121
After 20 iterations
Discriminator Loss = 0.22091601789
Generator_Loss: 2.22315883636
122
Level #1 Epoch #0 Batch #122
After 20 iterations
Discriminator Loss = 0.178747862577
Generator_Loss: 2.32056856155
123
After 20 iterations
Discriminator Loss = 0.154115512967
Generator_Loss: 2.18787455559
124
Level #1 Epoch #0 Batch #124
After 20 iterations
Discriminator Loss = 0.159564748406
Generator_Loss: 2.39682435989
125
After 20 iterations
Discriminator Loss = 0.135683000088
Generator_Loss: 2.42507576942
126
Level #1 Epoch #0 Batch #126
After 20 iterations
Discriminator Loss = 0.107406198978
Generator_Loss: 2.7096016407
127
After 20 iterations
Discriminator Loss = 0.126955896616
Generator_Loss: 2.72549510002
128
Level #1 Epoch #0 Batch #128
After 20 iterations
Discriminator Loss = 0.118843249977
Generator_Loss: 2.69063901901
129
After 20 iterations
Discriminator Loss = 0.121902771294
Generator_Loss: 2.63402628899
130
Level #1 Epoch #0 Batch #130
After 20 iterations
Discriminator Loss = 0.171956405044
Generator_Loss: 3.06998944283
131
After 20 iterations
Discriminator Loss = 0.16597263515
Generator_Loss: 2.64703249931
132
Level #1 Epoch #0 Batch #132
After 20 iterations
Discriminator Loss = 0.151690915227
Generator_Loss: 2.28477954865
133
After 20 iterations
Discriminator Loss = 0.197952881455
Generator_Loss: 1.87336444855
134
Level #1 Epoch #0 Batch #134
After 20 iterations
Discriminator Loss = 0.124226771295
Generator_Loss: 2.03386354446
135
After 20 iterations
Discriminator Loss = 0.179865017533
Generator_Loss: 2.11952972412
136
Level #1 Epoch #0 Batch #136
After 20 iterations
Discriminator Loss = 0.128241494298
Generator_Loss: 2.06730723381
137
After 20 iterations
Discriminator Loss = 0.144676700234
Generator_Loss: 2.197078228
138
Level #1 Epoch #0 Batch #138
After 20 iterations
Discriminator Loss = 0.117173299193
Generator_Loss: 2.35017609596
139
After 20 iterations
Discriminator Loss = 0.0877492576838
Generator_Loss: 2.59621858597
140
Level #1 Epoch #0 Batch #140
After 20 iterations
Discriminator Loss = 0.0912589281797
Generator_Loss: 2.6112382412
141
After 20 iterations
Discriminator Loss = 0.162896886468
Generator_Loss: 2.43843150139
142
Level #1 Epoch #0 Batch #142
After 20 iterations
Discriminator Loss = 0.14781524241
Generator_Loss: 2.67018294334
143
After 20 iterations
Discriminator Loss = 0.114146634936
Generator_Loss: 2.67408752441
144
Level #1 Epoch #0 Batch #144
After 20 iterations
Discriminator Loss = 0.084156498313
Generator_Loss: 2.78800177574
145
After 20 iterations
Discriminator Loss = 0.0656395331025
Generator_Loss: 2.63689494133
146
Level #1 Epoch #0 Batch #146
After 20 iterations
Discriminator Loss = 0.130854293704
Generator_Loss: 2.51503324509
147
After 20 iterations
Discriminator Loss = 0.112723812461
Generator_Loss: 2.35591435432
148
Level #1 Epoch #0 Batch #148
After 20 iterations
Discriminator Loss = 0.144537389278
Generator_Loss: 2.03366661072
149
After 20 iterations
Discriminator Loss = 0.210818678141
Generator_Loss: 2.25024104118
150
Level #1 Epoch #0 Batch #150
After 20 iterations
Discriminator Loss = 0.20190115273
Generator_Loss: 1.98252785206
151
After 20 iterations
Discriminator Loss = 0.172216683626
Generator_Loss: 2.30034065247
152
Level #1 Epoch #0 Batch #152
After 20 iterations
Discriminator Loss = 0.163898944855
Generator_Loss: 2.24930334091
153
After 20 iterations
Discriminator Loss = 0.216546237469
Generator_Loss: 2.28064060211
154
Level #1 Epoch #0 Batch #154
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-6-a15c0247e600> in <module>()
11 rule=rule,
12 train_loss=train_loss,
---> 13 verbose=True)
/Users/RoozbehFarhoudi/Documents/Repos/McNeuron/train3.pyc in train_model(training_data, n_nodes, input_dim, n_epochs, batch_size, n_batch_per_epoch, d_iters, lr_discriminator, lr_generator, weight_constraint, rule, train_loss, verbose)
313 # Display loss trace
314 #if verbose:
--> 315 plot_utils.plot_loss_trace(list_d_loss)
316
317 # Save models
/Users/RoozbehFarhoudi/Documents/Repos/McNeuron/plot_utils.pyc in plot_loss_trace(loss)
71 plt.figure(figsize=(3, 2))
72 plt.plot(loss)
---> 73 plt.show()
74
75
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/matplotlib/pyplot.pyc in show(*args, **kw)
153 """
154 global _show
--> 155 return _show(*args, **kw)
156
157
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/ipykernel/pylab/backend_inline.pyc in show(close)
30 try:
31 for figure_manager in Gcf.get_all_fig_managers():
---> 32 display(figure_manager.canvas.figure)
33 finally:
34 show._to_draw = []
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/IPython/core/display.pyc in display(*objs, **kwargs)
157 publish_display_data(data=obj, metadata=metadata)
158 else:
--> 159 format_dict, md_dict = format(obj, include=include, exclude=exclude)
160 if not format_dict:
161 # nothing to display (e.g. _ipython_display_ took over)
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/IPython/core/formatters.pyc in format(self, obj, include, exclude)
173 md = None
174 try:
--> 175 data = formatter(obj)
176 except:
177 # FIXME: log the exception
<decorator-gen-9> in __call__(self, obj)
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/IPython/core/formatters.pyc in catch_format_error(method, self, *args, **kwargs)
218 """show traceback on failed format call"""
219 try:
--> 220 r = method(self, *args, **kwargs)
221 except NotImplementedError:
222 # don't warn on NotImplementedErrors
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/IPython/core/formatters.pyc in __call__(self, obj)
335 pass
336 else:
--> 337 return printer(obj)
338 # Finally look for special method names
339 method = _safe_get_formatter_method(obj, self.print_method)
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/IPython/core/pylabtools.pyc in <lambda>(fig)
205
206 if 'png' in formats:
--> 207 png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs))
208 if 'retina' in formats or 'png2x' in formats:
209 png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs))
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/IPython/core/pylabtools.pyc in print_figure(fig, fmt, bbox_inches, **kwargs)
115
116 bytes_io = BytesIO()
--> 117 fig.canvas.print_figure(bytes_io, **kw)
118 data = bytes_io.getvalue()
119 if fmt == 'svg':
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/matplotlib/backend_bases.pyc in print_figure(self, filename, dpi, facecolor, edgecolor, orientation, format, **kwargs)
2209 orientation=orientation,
2210 bbox_inches_restore=_bbox_inches_restore,
-> 2211 **kwargs)
2212 finally:
2213 if bbox_inches and restore_bbox:
/Users/RoozbehFarhoudi/anaconda/lib/python2.7/site-packages/matplotlib/backends/backend_agg.pyc in print_png(self, filename_or_obj, *args, **kwargs)
531 _png.write_png(renderer._renderer.buffer_rgba(),
532 renderer.width, renderer.height,
--> 533 filename_or_obj, self.figure.dpi)
534 finally:
535 if close:
KeyboardInterrupt: