In [2]:
import sys
sys.path.insert(0, '../Code/')

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import load_data

In [3]:
data = load_data.import_cleaned_data('train')


Tokenization took: 31.64 ms
Type conversion took: 70.70 ms
Parser memory cleanup took: 0.21 ms
Tokenization took: 15.32 ms
Type conversion took: 61.11 ms
Parser memory cleanup took: 0.04 ms
Tokenization took: 16.28 ms
Type conversion took: 65.80 ms
Parser memory cleanup took: 0.14 ms
Tokenization took: 0.14 ms
Type conversion took: 2.45 ms
Parser memory cleanup took: 0.00 ms

In [4]:
def plot_categorical_data(data):
    """
    
    """


Out[4]:
site_name posa_continent user_location_country user_location_region user_location_city orig_destination_distance user_id is_mobile is_package channel ... month_action day_action hour_action minute_action year_checkin month_checkin day_checkin year_checkout month_checkout day_checkout
0 2 3 66 348 48862 2234.2641 12 0 1 9 ... 8 11 7 46 1 8 27 1 8 31
1 2 3 66 348 48862 2234.2641 12 0 1 9 ... 8 11 8 22 1 8 29 1 9 2
2 2 3 66 348 48862 2234.2641 12 0 0 9 ... 8 11 8 24 1 8 29 1 9 2
3 2 3 66 442 35390 913.1932 93 0 0 3 ... 8 9 18 5 1 11 23 1 11 28
4 2 3 66 442 35390 913.6259 93 0 0 3 ... 8 9 18 8 1 11 23 1 11 28

5 rows × 32 columns


In [ ]: