In [1]:
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
In [2]:
data = load_iris()
x = data['data']
plt.close('all')
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.boxplot(x)
ax.set_xticklabels(data['feature_names'])
plt.show()
In [5]:
import numpy as np
y = data['target']
class_labels = data['target_names']
fig = plt.figure(2,figsize=(18,10))
sub_plt_count = 321
for t in range(0,3):
ax = fig.add_subplot(sub_plt_count)
y_index = np.where(y==t)[0]
x_ = x[y_index,:]
ax.boxplot(x_)
ax.set_title(class_labels[t])
ax.set_xticklabels(data['feature_names'])
sub_plt_count +=1
plt.show()