All data were taken from here http://www.dbm.gov.ph/?page_id=9796


In [1303]:
%matplotlib inline
%precision %.14g
import pandas as pd
from pylab import *
import mpld3
import sys
reload(sys)
sys.setdefaultencoding("utf-8")

rcParams['figure.figsize'] = 12, 6
pd.set_option('display.max_rows',1000)

mpld3.enable_notebook()

DATA_PATH = "../DAP/"

July 15 Detailed List

As of Sept 21, this previous data updated by DBM with this http://www.dbm.gov.ph/wp-content/uploads/DAP/Dap%20Page/Projects/7302014%20-%20Detailed%20List%20of%20DAP%20Projects.Open_08042014.csv.

However, we will still be using the old data to compare changes.


In [1304]:
names = ['No','Tranche','Approval','Agency','Description','Proposed','Released','Balance','Remarks']
dap_data = pd.read_csv(DATA_PATH + "DAP Projects as of July 15 2014_List_73114.csv",names=names) 
dap_data.fillna(0,inplace=True)
dap_data['Proposed'][dap_data.Proposed == ' -   ']=0
dap_data['Balance'][dap_data.Balance == ' -   ']=0
dap_data['Released'][dap_data.Released == ' -   ']=0
dap = dap_data[6:]
dap['Proposed'] = dap['Proposed'].apply(lambda x: float(x))
dap['Balance'] = dap['Balance'].apply(lambda x: float(x))
dap['Released'] = dap['Released'].apply(lambda x: float(x))

dap['Department'] = 0
dap['Department'][dap.Agency.str.contains('DOF')]='DOF'
dap['Department'][dap.Agency.str.contains('BSP')]='DOF'
dap['Department'][dap.Agency.str.contains('NHA')]='NHA'
dap['Department'][dap.Agency.str.contains('ARMM')]='ARMM'
dap['Department'][dap.Agency.str.contains('DPWH')]='DPWH'
dap['Department'][dap.Agency.str.contains('DepEd')]='DEPED'
dap['Department'][dap.Agency.str.contains('PNP')]='PNP'
dap['Department'][dap.Agency.str.contains('LRTA')]='LRTA'
dap['Department'][dap.Agency.str.contains('DA')]='DA'
dap['Department'][dap.Agency.str.contains('OPAPP')]='OPAPP'
dap['Department'][dap.Agency.str.contains('DOST')]='DOST'
dap['Department'][dap.Agency.str.contains('DAR')]='DAR'
dap['Department'][dap.Agency.str.contains('NEA')]='NEA'
dap['Department'][dap.Agency.str.contains('TESDA')]='TESDA'
dap['Department'][dap.Agency.str.contains('PHILPOST')]='PHILPOST'
dap['Department'][dap.Agency.str.contains('DBM')]='DBM'
dap['Department'][dap.Agency.str.contains('TIDCORP')]='TIDCORP'
dap['Department'][dap.Agency.str.contains('CHED')]='CHED'
dap['Department'][dap.Agency.str.contains('Phil. Heart')]='PHIL HEART CENTER'
dap['Department'][dap.Agency.str.contains('DOH')]='DOH'
dap['Department'][dap.Agency.str.contains('LLDA')]='LLDA'
dap['Department'][dap.Agency.str.contains('DILG')]='DILG'
dap['Department'][dap.Agency.str.contains('HR')]='HOR'
dap['Department'][dap.Agency.str.contains('DOT')]='DOT'
dap['Department'][dap.Agency.str.contains('NEDA')]='NEDA'
dap['Department'][dap.Agency.str.contains('DPWH')]='DPWH'
dap['Department'][dap.Agency.str.contains('COA')]='COA'
dap['Department'][dap.Agency.str.contains('PIDS')]='PIDS'
dap['Department'][dap.Agency.str.contains('DND')]='DND'
dap['Department'][dap.Agency.str.contains('DSWD')]='DSWD'
dap['Department'][dap.Agency.str.contains('LCOP')]='LCOP'
dap['Department'][dap.Agency.str.contains('Credit Info')]='CREDIT INFO CORP'
dap['Department'][dap.Agency.str.contains('DOLE')]='DOLE'
dap['Department'][dap.Agency.str.contains('DPWH')]='DPWH'

dap_summary = dap[['Department','Agency','Proposed','Released','Balance']].groupby(['Department','Agency']).sum()
dap_summary.sort(columns='Released',ascending=False)

#in million pesos


Out[1304]:
Proposed Released Balance
Department Agency
DOF DOF-BSP: Additional Equity Infusion to the BSP�s Authorized Capital Stock 20000.000 20000.000 0.000
0 Other Various Local Projects 17585.000 17310.195 274.805
NHA NHA: On-Site Development for Families Living along Dangerous Areas 10000.000 10000.000 0.000
DOF BSP: First Equity Infusion out of P40 B Capitalization under the BSP Law 10000.000 10000.000 0.000
ARMM ARMM: Comprehensive Peace and Development Intervention 8592.000 8389.954 202.046
0 LGU Support Fund 6500.000 6499.100 0.900
DPWH DPWH: Various Infrastructure Projects 5500.000 5500.000 0.000
DPWH-DOT: Tourism Road Infrastucture Project 5000.000 5000.000 0.000
GOCCs/DPWH/LGUs: Priority Local Projects Nationwide 4600.000 4459.881 140.119
DEPED DepEd: Public-Private Partnership for School Infrastructure Project Phase II 4077.000 4070.722 6.278
DPWH DPWH: Various Priority Infrastructure Projects 4077.504 3989.110 88.394
DEPED GSIS-DepEd: GSIS Premium Payments for DepEd Personnel 4077.000 3461.685 615.315
CHED CHED: Institutional Capacity Building of Leading State Universities 3356.600 3356.600 0.000
DOF DOF-BOC: To Settle the Principal Obligations with PDIC Consistent with the Agreement with the CISS and SGS 2799.611 2799.611 0.000
PNP PNP: Additional Budget for PNP Modernization Program (First Tranche) 2000.000 2000.000 0.000
DPWH DPWH: National Road Projects in the Province of Tarlac 2000.000 2000.000 0.000
0 GOCCs/NGAs: Other Various Local Projects 1880.000 1880.000 0.000
LRTA LRTA: Rehabilitation of LRT 1 and 2 1867.512 1867.512 0.000
OPAPP OPAPP: Activities for Peace Process (PAMANA) 1819.000 1819.000 0.000
DA DA: Irrigation, FMRs and Integrated Community-Based Multi-Species Hatchery and Aquasilvi Farming 1637.880 1637.880 0.000
DOST DOST: Nationwide Disaster Risk, Exposure, Assessment and Mitigation (DREAM) 1600.000 1600.000 0.000
0 PHIC: Obligations Incurred (Premium Subsidy for NHIP Indigent Families) in January-June 2010, Booked for Payment in July-December 2010 1496.103 1496.103 0.000
NG: Expanded Government Internship Program 1337.091 1332.768 4.323
DAR DAR: Agrarian Reform Communities Project 2 1292.953 1292.953 0.000
NEA NEA: Release of Funds for the Sitio Electrification Project 1264.000 1264.000 0.000
DPWH DPWH: Budget Deficit for the Secondary National Road Project of Millenium Challenge Account-Philippines under the Compact between the US Government and the GPH 1200.000 1200.000 0.000
TESDA TESDA: Training Program in Partnership with BPO Industry and Other Sectors 1100.000 1100.000 0.000
DA DA: Facility for Credit, Insurance and Guarantee Exclusively for Agrarian Reform Beneficiaries which Will Be Managed by the LBP, in Coordination with DA 1000.000 1000.000 0.000
DA: Mindanao Rural Development Project 919.306 919.306 0.000
PNP PNP: Creation/Hiring of 15,000 Non-Uniformed Personnel Positions 1878.000 860.705 1017.295
DOF DOF-BIR: NPSTAR, Centralization of Data Processing and Others (To be Synchronized with GIFMIS Activities) 758.385 758.385 0.000
0 Development Assistance to the Province of Quezon 750.000 750.000 0.000
DPWH OPPAP, DND-AFP, DPWH, and ARMM: Payapa at Masaganang Pamayanan Program (PAMANA) 745.456 656.700 88.756
0 PhilPost: Purchase of Foreclosed Property, Payment of Mandatory Obligations, (GSIS, Philhealth, ECC), Franking Privilege 644.000 644.000 0.000
DPWH DPWH: Payment of Right-of-Way Claims Nationwide 719.020 630.020 89.000
DBM DBM/NSO: Conduct of National Survey of Farmers/ Fisherfolks/ IPs 625.000 605.077 19.923
TIDCORP TIDCORP: NG Equity Infusion 570.000 570.000 0.000
CHED CHED: Grants-in-Aid Program for Poverty Alleviation 500.000 500.000 0.000
DOT DOT: Tourism Media Advertising Campaign 500.000 500.000 0.000
DOLE DOLE-TESDA: Additional Funding for the Expanded Training for Work Scholarship Program 500.000 500.000 0.000
NHA NHA: Housing for BFP/BJMP 500.000 500.000 0.000
NHA: Resettlement of North Triangle Residents to Camarin A7 450.000 450.000 0.000
DA DA-NIA: Jalaur River Multipurpose Project 450.000 450.000 0.000
CHED CHED: Modernizing HE Facilities 427.800 427.800 0.000
DA DA: NIA Agno River Integrated Irrigation Project 411.404 411.404 0.000
0 HGC: Equity Infusion for Credit Insurance and Mortgage Guaranty Operations of HGC 400.000 400.000 0.000
PHIL HEART CENTER Phil. Heart Center: Upgrading of Ageing Physical Plant and Medical Equipment 357.000 357.000 0.000
0 PCOO-PTNI: People�s Television Network, Inc. Funding Support for Operational Requirements 342.537 342.537 0.000
DND DND-(PAF) AFP: Additional Funds to Support PAF Unfunded Requirements to Address its Current Capability Gap 307.500 307.500 0.000
DOST DOST: Establishment of the Advanced Failure Analysis Laboratory 300.000 300.000 0.000
DPWH DPWH MOA with MMDA: Priority Flood Control Projects 295.571 295.571 0.000
DOH DOH: Hiring of Nurses and Midwives 294.000 294.000 0.000
0 PCMC: Capital and Equipment Renovation 280.000 280.000 0.000
DOST DOST: Establishment of National Meteorological and Climate Center 275.000 275.000 0.000
LLDA LLDA: Infrastructure Upgrade and Development Program 270.000 270.000 0.000
DOST DepEd/ERDT-DOST: Thin Client Cloud Computing Project 270.000 270.000 0.000
DILG DILG: Local Governance Performance Management Program _ Performance-Based Challenge Fund for LGUs 253.000 253.000 0.000
DSWD DILG: Performance Challenge Fund (People Powered Community Driven Development with DSWD and NAPC) 250.000 250.000 0.000
HOR HR: Construction of the Legislative Library and Archive Building/Congressional E-Library 250.000 250.000 0.000
DOT DOT: Roxas Boulevard Redevelopment Plan 250.000 250.000 0.000
0 PSG: Malacanang Security and Communication Plan 248.327 248.327 0.000
DA MMDA: Solid Waste Disposal Project 230.000 230.000 0.000
DOT DOT-National Parks Dev�t Committee: Kilometer Zero-National Monument Hardscape and Softscape Redevelopment Project 207.000 207.000 0.000
NEDA NEDA: Various Infrastructure Improvement Projects 207.040 206.896 0.144
DOT DOT: Transfer of the DOT Offices and its Attached Agencies 200.260 200.260 0.000
0 BOC: IT Infrastructure Maintenance Project 192.640 192.640 0.000
DPWH DPWH MOA with MMDA: Urban Renewal, Traffic Management, Flood Control (Phase I) 154.403 154.403 0.000
DOST DOST: Enhancement of Doppler Radar Network for National Weather Watch, Accurate Forecasting and Flood Early Warning 150.000 150.000 0.000
DPWH DPWH: Permanent Maguiling Bridge Project 145.000 145.000 0.000
COA COA: IT Infrastructure Program and Hiring of Additional Litigation Experts 143.700 143.700 0.000
DILG DILG: Construction of 20 PNP Police Stations 128.210 128.210 0.000
DA DA-NFA: Provision for the Mechanical Dryers 121.000 121.000 0.000
PNP PNP: Additional Funds for MOOE of PNP Regional Offices/PNP Stations 115.556 115.556 0.000
DOT DOTC-PCG: Capability Requirements for the Operations of PCG in the West Philippine Sea 1600.000 104.673 1495.327
NHA NHA: Relocation Sites for Informal Settlers along Iloilo River and its Tributaries 100.000 100.000 0.000
PIDS PIDS: Purchase of Land to Relocate the PIDS Office and Building Construction 100.000 100.000 0.000
DILG DILG: DILG-Central Office to a New NAPOLCOM Building 100.000 100.000 0.000
DSWD DSWD: GOP Counterpart for KALAHI-CIDSS Millenium Challenge Corporation Grant 95.246 95.246 0.000
DPWH DPWH: Repair of Road Network Inside Camp Bagong Diwa, Taguig City 85.755 85.755 0.000
CREDIT INFO CORP Credit Info Corp.: Establishment of Centralized Credit Information System 75.000 75.000 0.000
LCOP LCOP: Bio-Regenerative Technology Program (Stem Cell Research) 70.000 70.000 0.000
DND DND-AFP: Rehabilitation of the Air Education and Training Command 60.000 60.000 0.000
DOLE DOLE: Capacity Enhancement to Meet Labor Standards Requirement 180.000 57.720 122.280
0 National Archives of the Philippines: Philippine Digitization Fund 50.000 50.000 0.000
DOT DOT-Corregidor Foundation: Emergency Repairs for the Corregidor North Dock 46.713 46.713 0.000
DPWH DPWH: PNP Maritime Group Training Facility 45.000 45.000 0.000
DOT DOTC-PCG: Additional MOOE for Patrol Operations at Bajo de Masinloc 44.171 44.171 0.000
DILG DILG: Special Capacity Building Project for People�s and Non-Government Organization 43.323 43.323 0.000
LCOP LCOP: Pediatric Pulmonary Program 35.000 35.000 0.000
DND DND-PAF: On-Base Housing Facilities and Communication Equipment 29.800 29.800 0.000
DILG DILG: Replacement of 34 Dilapidated Units and 4 Motorcycles of the DILG-NPC 27.470 27.470 0.000
DOT DOT: Preservation of the Cine Corregidor Complex 25.000 25.000 0.000
DPWH DPWH: Restoration and Rehabilitation of Various Historical and State Rooms in the Malacanang Palace 20.440 20.440 0.000
0 OEO-FDCP: Establishment of the National Film Archive and Local Cinematheques, and Other Local Activities 20.000 20.000 0.000
DILG DILG: High Profile Jail Facility 20.000 20.000 0.000
0 DOJ: Operating Requirements of 50 Investigation Agents and 15 State Attorneys 11.200 11.200 0.000
DPWH DPWH: Construction of the PNP Crisis Action Force Building 8.722 8.722 0.000
DA DAP: Harmonization of National Government Performance Monitoring and Reporting Systems 5.000 5.000 0.000
DPWH DPWH: Incentives of Personnel Affected by the Rationalization Program 2286.761 0.000 2286.761
DOT DOTC-LRTA: Rehabilitation/Extension of LRT Lines 1 and 2 1400.000 0.000 1400.000
NEA NEA: Rural Electrification for Barangay and Sitios 1000.000 0.000 0.000
DOT DOT-National Parks Dev�t. Committee: Kilometer Zero-National Monument Hardscape and Softscape Redevelopment Project 207.100 0.000 0.000
DOT-Mun. of Maragondon, Cavite: Financial Support for the Gat Bonifacio Shrine and Eco-Tourism Park 149.340 0.000 0.000
DSWD DSWD: Pilot Testing of Enhanced Provincial LGU Engagement for National Community Driven Development Project 209.000 0.000 0.000
DOT DOTC-MRT: Purchase of Additional MRT Cars 4500.000 0.000 4500.000
DPWH NG thru DPWH: Re-Acquisition of Air Rights Sold by PNR to HGC 1260.000 0.000 1260.000
DAR DAR: Landowners� Compensation 0.000 0.000 0.000
DPWH DAR-DPWH: Tulay ng Pangulo sa Kaunlaran Pang-Agraryo (French Bridge) 1800.000 0.000 0.000
0 NSO: Registry System for Basic Sectors in Agriculture Phase 2 1492.000 0.000 0.000
DPWH DOH-DPWH: Construction and Rehabilitation of Rural Health Units 1960.000 0.000 0.000
0 NHCP: Rehabilitation of the Watson Building near Malacanang 7.000 0.000 0.000
NHCP: Detailed Engineering of Goldenberg Mansion and Teus House, Malacanang 4.000 0.000 0.000
DOF NG thru DOF: Re-Acquisition of Air Rights Sold by PNR to HGC 2243.000 0.000 0.000

In [1305]:
dap_summary.sum()


Out[1305]:
Proposed    167061.410
Released    144378.304
Balance      13611.666
dtype: float64

UPDATED DATA WITH DETAILS


In [1333]:
#names = [u'DAP Project Number', u'DAP Number', u'PROJECT TYPE', u'AGENCY', u'DESCRIPTION', 
#         u'SARO NO.', u'DATE ISSUED', u'P/A/P_CODE', u'P/A/P_DESCRIPTION', u'DEFICIENCY (per OP approval)', 
#         u'releases_2', u'SOURCES OF FUND', u'APPRO. SOURCE', u'STATUS_Obligation', u'STATUS_Disbursement', 
#         u'STATUS_Output', u'GAA/Page #']

names = [u'DAP Project Number', u'DAP Number', u'PROJECT TYPE', u'AGENCY', u'DESCRIPTION', 
         u'SARO NO.', u'DATE ISSUED', u'P/A/P_CODE', u'P/A/P_DESCRIPTION', u' DEFICIENCY', 
         u'RELEASES', u'RELEASES_2', 
         u'SOURCES OF FUND', u'APPRO. SOURCE', u'STATUS_Obligation', 
         u'STATUS_Disbursement', u'STATUS OUTPUTS', u'GAA/Page #']

dap_detailed_list = pd.read_csv(DATA_PATH + "DAP Projects as of 08042014.csv", names = names) 
dap_detailed_list.fillna(0,inplace=True)
dap_detailed_list = dap_detailed_list[1:]
dap_detailed_list['RELEASES_2'] = dap_detailed_list['RELEASES_2'].apply(lambda x: convert_amount(x))
c=dap_detailed_list[dap_detailed_list['SARO NO.'] != 0]
c['RELEASES_2'].sum()
#dap_detailed_list


Out[1333]:
142989508

In [1332]:
totals_names = [' GRAND TOTAL - DAP 1 ',' GRAND TOTAL - DAP 2 ',' GRAND TOTAL - DAP 3 ',' GRAND TOTAL - DAP 4 ',
          ' GRAND TOTAL - DAP 5 ', ' GRAND TOTAL - DAP 6 ']
totals = dap_detailed_list[dap_detailed_list['DESCRIPTION'].isin(totals_names)]
totals['RELEASES_2'].sum()


Out[1332]:
103936138

UPDATED DATA WITH PROPONENTS

Third source data we will be using. The link to spreadsheet was taken down from the DBM site. But you can still directly access it here. http://www.dbm.gov.ph/wp-content/uploads/DAP/Dap%20Page/Projects/DAP%20with%20Proponents%20FINAL.xlsx


In [1308]:
names = [u'No', u'PROJECT NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 'DESCRIPTION',
       u'Other Details (leave blank if none)', u'APPRO\n(GAA)',
       u'DEFICIENCY\n(per OP approval)', u'RELEASES', 'A', 'B',
       u'RELEASES', u'TOTAL', u'SOURCES OF FUND', u'APPRO. SOURCE',
       u'STATUS', nan, nan, nan, nan, u'Remarks', u'GAA/Page #', nan, nan,
       u'PROPONENT', nan],

updated_dap_data01 = pd.read_excel(DATA_PATH + "DAP with Proponents FINAL.xlsx",sheetname='DAP 1') 
updated_dap_data02 = pd.read_excel(DATA_PATH + "DAP with Proponents FINAL.xlsx",sheetname='DAP 2') 
updated_dap_data03 = pd.read_excel(DATA_PATH + "DAP with Proponents FINAL.xlsx",sheetname='DAP 3')
updated_dap_data04 = pd.read_excel(DATA_PATH + "DAP with Proponents FINAL.xlsx",sheetname='DAP 4')
updated_dap_data05 = pd.read_excel(DATA_PATH + "DAP with Proponents FINAL.xlsx",sheetname='DAP 5')
updated_dap_data06 = pd.read_excel(DATA_PATH + "DAP with Proponents FINAL.xlsx",sheetname='DAP 6')
#updated_dap_data0.columns = names

In [1309]:
updated_dap_data01.fillna(0,inplace=True)

c=updated_dap_data01[['Unnamed: 1','Unnamed: 2','Unnamed: 3','Unnamed: 4','Unnamed: 5','Unnamed: 14',
                    'Unnamed: 15','Unnamed: 16','Unnamed: 17','Unnamed: 12', 
                    'Unnamed: 21',
                    'Unnamed: 22','Unnamed: 25']]

names = ['PROJECT_NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 'DESCRIPTION', u'SOURCES OF FUND',
         u'APPRO. SOURCE', u'OBLIGATION', 'DISBURSEMENT', 'TOTAL AMOUNT',
         u'Remarks', 
         u'GAA/Page #', u'PROPONENT']

c.columns = names
total_releases_01=c['TOTAL AMOUNT'][c['PROJECT_NAME']=='GRAND TOTAL - DAP 1'].values[0]
c=c[9:]
c['SARO NO.'][c['SARO NO.']=='DAR'] = 0
c01=c[c['SARO NO.']!=0]

In [1310]:
updated_dap_data02.fillna(0,inplace=True)

c=updated_dap_data02[['Unnamed: 1','Unnamed: 2','Unnamed: 3','Unnamed: 4',
                      'Unnamed: 5','Unnamed: 14',
                      'Unnamed: 15','Unnamed: 16','Unnamed: 17','Unnamed: 12','Unnamed: 19',
                      'Unnamed: 20','Unnamed: 21']]

names = ['PROJECT_NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 
         'DESCRIPTION', u'SOURCES OF FUND',
         u'APPRO. SOURCE', u'OBLIGATION', 'DISBURSEMENT','TOTAL AMOUNT', u'Remarks', 
         u'GAA/Page #',u'PROPONENT']

c.columns = names
total_releases_02=c['TOTAL AMOUNT'][c['PROJECT_NAME']=='GRAND TOTAL - DAP 2'].values[0]
c=c[3:]
c02=c[c['SARO NO.']!=0]

In [1311]:
updated_dap_data03.fillna(0,inplace=True)

c=updated_dap_data03[['Unnamed: 1','Unnamed: 3','Unnamed: 4','Unnamed: 5',
                      'Unnamed: 6','Unnamed: 15',
                      'Unnamed: 16','Unnamed: 17','Unnamed: 18','Unnamed: 13','Unnamed: 20',
                      'Unnamed: 21','Unnamed: 22']]

names = ['PROJECT_NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 
         'DESCRIPTION', u'SOURCES OF FUND',
         u'APPRO. SOURCE', u'OBLIGATION', 'DISBURSEMENT','TOTAL AMOUNT', u'Remarks', 
         u'GAA/Page #',u'PROPONENT']

c.columns = names
total_releases_03=c['TOTAL AMOUNT'][c['PROJECT_NAME']=='GRAND TOTAL - DAP 3'].values[0]
c=c[9:]
c03=c[c['SARO NO.']!=0]

In [1312]:
updated_dap_data04.fillna(0,inplace=True)

c=updated_dap_data04[['Unnamed: 1','Unnamed: 3','Unnamed: 4','Unnamed: 5',
                      'Unnamed: 6','Unnamed: 15',
                      'Unnamed: 16','Unnamed: 17','Unnamed: 18','Unnamed: 13','Unnamed: 20',
                      'Unnamed: 21','Unnamed: 24']]

names = ['PROJECT_NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 
         'DESCRIPTION', u'SOURCES OF FUND',
         u'APPRO. SOURCE', u'OBLIGATION', 'DISBURSEMENT','TOTAL AMOUNT', u'Remarks', 
         u'GAA/Page #',u'PROPONENT']

c.columns = names
total_releases_04=c['TOTAL AMOUNT'][c['PROJECT_NAME']=='GRAND TOTAL - DAP 4'].values[0]
c=c[10:]
c04=c[c['SARO NO.']!=0]

In [1313]:
updated_dap_data05.fillna(0,inplace=True)

c=updated_dap_data05[['Unnamed: 1','Unnamed: 2','Unnamed: 3','Unnamed: 4',
                      'Unnamed: 5','Unnamed: 14',
                      'Unnamed: 15','Unnamed: 16','Unnamed: 17','Unnamed: 12','Unnamed: 19',
                      'Unnamed: 20','Unnamed: 21']]

names = ['PROJECT_NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 
         'DESCRIPTION', u'SOURCES OF FUND',
         u'APPRO. SOURCE', u'OBLIGATION', 'DISBURSEMENT','TOTAL AMOUNT', u'Remarks', 
         u'GAA/Page #',u'PROPONENT']

c.columns = names
total_releases_05=c['TOTAL AMOUNT'][c['PROJECT_NAME']=='GRAND TOTAL - DAP 5'].values[0]
c=c[9:]
c05=c[c['SARO NO.']!=0]

In [1314]:
updated_dap_data04


Out[1314]:
Disbursement Acceleration Program (DAP) Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9 ... Unnamed: 15 Unnamed: 16 Unnamed: 17 Unnamed: 18 Unnamed: 19 Unnamed: 20 Unnamed: 21 Unnamed: 22 Unnamed: 23 Unnamed: 24
0 (amounts in thousand pesos) 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
2 PROJECT NAME 0 LEGAL\nBASIS SARO NO. DATE \nISSUED P/A/P 0 Other Details (leave blank if none) APPRO\n(GAA) DEFICIENCY (per OP approval) ... SOURCES OF FUND APPRO SOURCE STATUS 0 0 Remarks GAA/Page # 0 0 PROPONENT
3 0 0 0 0 0 Code Description 0 0 0 ... 0 0 Obligation Disbursement Actual Outputs 0 0 2013 2012 0
4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
5 0 DAP 4 per OP Approval Dated September 05, 2012 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
8 79. DOLE's Capacity Enhancement to meet Labor Stan... 0 0 0 0 0 0 0 180000 ... 0 0 53164 55288 0 0 0 0 0 0
9 0 DOLE-OSEC 0 0 0 0 0 0 0 0 ... 0 0 53164 55288 0 0 0 0 0 0
10 0 Acquisiton of communication devices to support... 0 B-13-00536 2013-03-01 00:00:00 A.I.a General Administration and Support 0 637868 0 ... Overall\nSavings RA 10155 9164 11288 372 Labor Law Compliance Officers DAP 4 RA 10155, p. 638 1 0 DOLE
11 0 200 units of Job-Search Kiosk 0 B-13-01104 2013-06-21 00:00:00 B.I.a Skills Registry Program 0 23300 0 ... Overall\nSavings RA 10155 44000 44000 111- LGUs; \n89- DOLE Regional Offices/Field O... DAP 4 RA 10155, p. 639 1 0 DOLE
12 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
14 80. Emergency Repairs for the Corregidor North Dock 0 0 0 0 0 0 0 0 ... 0 0 46713 46713 0 0 0 0 0 0
15 0 DOT-OSEC 0 0 0 0 0 0 0 0 ... 0 0 46713 46713 0 0 0 0 0 0
16 0 0 0 A-12-00928 2012-10-15 00:00:00 A.III.c.2.a \n\nA.III.c.2.a.6 Operation and Maintenance of Regional Offices\... 0 206324 46713 ... Overall\nSavings RA 10155 46713 46713 100% transferred to Corregidor Foundation\n- T... DAP 4 RA 10155 p. 1018 0 1 DOT
17 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
18 81. DILG-Central Office to a new NAPOLCOM Building 0 0 0 0 0 0 0 0 ... 0 0 100000 95290 0 0 0 0 0 0
19 0 DILG-NAPOLCOM 0 0 0 0 0 0 0 0 ... 0 0 100000 95290 0 0 0 0 0 0
20 0 0 0 D-12-00887 2012-10-09 00:00:00 A.I.a.1 General Administrative and Support Services 0 231891 100000 ... Overall\nSavings RA 10155 100000 95290 60% completed while the remaining 40% are eith... DAP 4 RA 10155, p. 586 0 1 DILG
21 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
22 82. Construction of twenty (20) PNP Police Stations 0 0 0 0 0 0 0 0 ... 0 0 125603 74921 0 0 0 0 0 0
23 0 DILG-PNP 0 0 0 0 0 0 0 0 ... 0 0 125603 74921 0 0 0 0 0 0
24 0 0 0 D-12-00888 2012-10-09 00:00:00 B.I.a Construction of Police Station 0 100000 128210 ... Overall\nSavings RA 10155 125603 74921 10 projects completed, 15 projects are on-goin... DAP 4 RA 10155, p. 595 0 1 DILG
25 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
26 83. High Profile Jail Facility 0 0 0 0 0 0 0 0 ... 0 0 19322 3000 0 0 0 0 0 0
27 0 DILG-BJMP 0 0 0 0 0 0 0 0 ... 0 0 19322 3000 0 0 0 0 0 0
28 0 0 0 D-12-00889 2012-10-09 00:00:00 A.III.a.1 Custody, safekeeping and rehabilitation of dis... 0 4406629 20000 ... Overall\nSavings RA 10155 19322 3000 30% construction ongoing DAP 4 RA 10155, p. 581 0 1 DILG
29 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
30 84. Replacement of thirty-four (34) dilapidated un... 0 0 0 0 0 0 0 0 ... 0 0 27470 27470 0 0 0 0 0 0
31 0 DILG-NAPOLCOM 0 0 0 0 0 0 0 0 ... 0 0 27470 27470 0 0 0 0 0 0
32 0 0 0 D-12-00890 2012-10-09 00:00:00 A.I.a.1 General Administrative and Support Services 0 231891 27470 ... Overall\nSavings RA 10155 27470 27470 34 MVs and 4 motorcycles were already procured... DAP 4 RA 10155, p. 586 0 1 DILG
33 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
34 85. Transfer of DOT offices and its affected attac... 0 0 0 0 0 0 0 0 ... 0 0 200260 200260 0 0 0 0 0 0
35 0 DOT-OSEC 0 0 0 0 0 0 0 0 ... 0 0 200260 200260 0 0 0 0 0 0
36 0 0 0 A-12-00927 2012-10-15 00:00:00 A.I.a.1 General Administration and Support Services 0 139224 200260 ... Overall\nSavings RA 10155 200260 200260 Implementation of transfer of DOT offices and ... DAP 4 RA 10155 p. 1017 0 1 DOT
37 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
38 86. Financial Support for the Gat Bonifacio Shrine... 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
40 87. Expanded Training for Work Scholarship 0 0 0 0 0 0 0 0 ... 0 0 0 482892 0 0 0 0 0 0
41 0 DOLE-TESDA 0 0 0 0 0 0 0 0 ... 0 0 0 482892 0 0 0 0 0 0
42 0 0 0 B-12-00753 2012-09-14 00:00:00 B.I.a Training for Work Scholarship Program (TWSP) 0 0 500000 ... Overall\nSavings RA 10155 0 482892 74,600 Enrolled; 74,504 Graduates DAP 4 RA 10155 p. 669 0 1 DOLE-TESDA
43 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
44 88. People's Television Network, Inc. Funding Supp... 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
45 0 PCOO-PROPER 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
46 0 0 0 C-12-00935 2012-10-16 00:00:00 A.II.a.1 Formulation & Coordination of public informati... 0 85679 342537 ... Overall\nSavings RA 10155 0 0 0 DAP 4 RA 10155 p. 1113 0 1 PCOO
47 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
48 89. Release of funds for the Sitio Electrification... 0 0 0 0 0 0 0 0 ... 0 0 1264000 1264000 0 0 0 0 0 0
49 0 BSGC-NEA 0 0 0 0 0 0 0 0 ... 0 0 1264000 1264000 0 0 0 0 0 0
50 0 0 0 F-12-00756 2012-09-14 00:00:00 A.I.a.1 Sitio Electrification Project 0 2000000 1264000 ... Overall\nSavings RA 10155 1264000 1264000 As of June 30, 2014, 1,930 sitios were energiz... DAP 4 RA 10155 p. 1293 0 1 NEA
51 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
52 90. Re-acquisition of Air Rights sold by PNR to Ho... 0 0 0 0 0 0 0 1260000 ... 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
54 91. Additional MOOE for Patrol Operations at Bajo ... 0 0 0 0 0 0 0 0 ... 0 0 44171 44171 0 0 0 0 0 0
55 0 DOTC-PCG 0 0 0 0 0 0 0 0 ... 0 0 44171 44171 0 0 0 0 0 0
56 0 0 0 A-12-00743 2012-09-10 00:00:00 A.III.a.1 Promotion of safety of life & property at sea ... 0 3254728 44171 ... Overall\nSavings RA 10155 44171 44171 Conducted routine patrol in response to the ag... DAP 4 RA 10155 p. 1069 0 1 DOTC
57 92. Detailed engineering studies of Goldenberg Man... 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
59 93. Rehabilitation of the Watson Building near Mal... 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
61 94. Registry System for Basic Sectors in Agricultu... 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
63 95. Kilometer Zero - National Monument Hardscape a... 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
66 0 GRAND TOTAL - DAP 4 0 0 0 0 0 0 0 4113361 ... 0 0 1880703 2294005 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 2 10 12
69 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
71 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
73 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
82 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
83 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
84 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
86 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
87 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
88 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
89 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
91 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
92 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
94 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
95 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
96 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
97 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
98 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
99 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
112 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
113 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
114 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
115 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
116 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
118 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
119 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
121 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
122 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
123 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
126 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
127 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
128 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
129 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
131 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
132 0 Scholarship Program 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
136 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
139 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
141 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
142 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
143 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
144 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
145 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
146 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
147 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
148 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
151 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
152 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
153 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
154 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
155 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
156 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
157 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
158 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
159 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
161 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
162 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
163 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
164 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
165 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
166 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
167 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
168 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
169 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
171 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
172 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
173 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
174 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
175 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
176 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
177 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
178 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
179 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
181 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
182 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
183 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
184 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
185 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
186 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
187 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
188 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
189 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
191 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
192 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
193 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
194 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
195 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
196 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
197 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
198 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
199 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
201 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
202 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
203 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
204 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
205 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
206 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
207 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
208 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
209 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
210 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
211 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
212 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
213 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
214 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
215 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
216 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
217 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
218 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
219 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
220 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
221 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
222 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
223 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
224 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
225 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
226 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
227 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
228 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
229 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
230 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
231 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
232 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
233 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
234 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
235 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
236 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
237 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
238 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
239 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
240 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
241 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
242 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
243 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
244 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
245 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
246 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
247 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
248 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
249 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
250 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
251 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
252 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
253 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
254 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
255 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
256 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
257 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
258 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
259 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
260 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
261 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
262 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
263 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
264 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
265 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
266 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
267 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
268 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
269 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
270 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
271 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
272 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
273 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
274 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
275 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
276 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
277 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
278 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
279 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
280 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
281 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
282 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
283 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
284 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
285 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
286 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
287 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
288 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
289 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
290 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
291 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
292 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
293 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
294 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
295 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
296 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
297 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
298 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
299 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
301 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
302 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
303 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
304 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
305 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
306 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
307 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
308 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
309 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
310 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
311 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
312 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
313 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
314 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
315 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
316 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
317 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
318 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
319 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
320 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
321 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
322 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
323 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
324 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
325 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
326 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
327 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
328 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
329 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
330 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
331 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
332 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
333 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
334 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
335 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
336 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
337 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
338 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
339 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
340 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
341 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
342 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
343 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
344 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
345 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
346 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
347 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
348 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
349 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
350 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
351 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
352 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
353 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
354 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
355 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
356 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
357 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
358 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
359 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
360 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
361 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
362 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
363 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
364 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
365 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
366 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
367 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
368 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
369 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
370 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
371 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
372 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
373 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
374 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
375 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
376 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
377 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
378 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
379 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
380 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
381 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
382 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
383 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
384 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
385 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
386 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
387 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
388 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
389 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
390 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
391 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
392 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
393 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
394 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
395 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
396 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
397 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
398 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
399 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
401 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
402 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
403 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
404 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
405 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
406 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
407 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
408 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
409 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
410 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
411 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
412 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
413 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
414 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
415 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
416 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
417 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
418 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
419 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
420 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
421 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
422 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
423 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
424 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
425 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
426 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
427 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
428 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
429 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
430 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
431 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
432 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
433 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
434 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
435 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
436 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
437 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
438 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
439 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
440 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
441 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
442 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
443 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
444 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
445 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
446 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
447 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
448 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
449 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
450 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
451 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
452 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
453 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
454 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
455 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
456 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
457 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
458 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
459 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
460 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
461 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
462 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
463 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
464 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
465 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
466 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
467 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
468 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
469 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
470 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
471 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
472 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
473 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
474 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
475 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
476 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
477 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
478 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
479 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
480 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
481 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
482 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
483 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
484 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
485 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
486 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
487 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
488 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
489 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
490 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
491 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
492 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
493 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
494 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
495 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
496 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
497 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
498 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
499 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
501 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
502 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
503 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
504 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
505 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
506 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
507 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
508 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
509 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
510 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
511 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
512 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
513 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
514 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
515 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
516 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
517 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
518 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
519 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
520 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
521 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
522 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
523 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
524 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
525 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
526 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
527 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
528 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
529 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
530 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
531 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
532 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
533 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
534 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
535 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
536 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
537 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
538 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
539 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
540 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
541 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
542 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
543 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
544 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
545 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
546 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
547 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
548 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
549 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
550 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
551 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
552 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
553 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
554 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
555 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
556 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
557 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
558 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
559 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
560 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
561 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
562 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
563 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
564 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
565 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
566 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
567 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
568 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
569 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
570 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
571 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
572 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
573 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
574 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
575 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
576 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
577 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
578 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
579 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
580 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
581 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
582 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
583 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
584 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
585 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
586 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
587 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
588 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
589 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
590 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
591 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
592 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
593 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
594 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
595 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
596 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
597 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
598 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
599 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
600 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
601 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
602 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
603 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
604 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
605 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
606 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
607 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
608 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
609 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
610 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
611 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
612 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
613 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
614 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
615 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
616 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
617 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
618 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
619 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
620 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
621 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
622 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
623 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
624 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
625 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
626 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
627 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
628 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
629 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
630 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
631 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
632 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
633 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
634 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
635 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
636 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
637 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
638 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
639 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
640 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
641 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
642 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
643 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
644 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
645 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
646 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
647 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
648 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
649 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
650 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
651 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
652 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
653 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
654 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
655 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
656 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
657 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
658 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
659 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
660 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
661 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
662 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
663 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
664 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
665 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
666 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
667 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
668 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
669 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
670 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
671 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
672 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
673 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
674 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
675 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
676 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
677 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
678 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
679 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
680 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
681 0 0 0 G-13-01166 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
682 0 0 0 G-13-01167 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

683 rows × 25 columns


In [1315]:
updated_dap_data06.fillna(0,inplace=True)

c=updated_dap_data06[['Unnamed: 1','Unnamed: 3','Unnamed: 4','Unnamed: 5',
                      'Unnamed: 6','Unnamed: 15',
                      'Unnamed: 16','Unnamed: 17','Unnamed: 18','Unnamed: 13','Unnamed: 19',
                      'Unnamed: 21','Unnamed: 22']]

names = ['PROJECT_NAME', u'SARO NO.', u'DATE \nISSUED', u'P/A/P', 
         'DESCRIPTION', u'SOURCES OF FUND',
         u'APPRO. SOURCE', u'OBLIGATION', 'DISBURSEMENT','TOTAL AMOUNT', u'Remarks', 
         u'GAA/Page #',u'PROPONENT']

c.columns = names
total_releases_06=c['TOTAL AMOUNT'][c['PROJECT_NAME']=='GRAND TOTAL - DAP 6'].values[0]
c=c[6:]
c06=c[c['SARO NO.']!=0]

Check totals and details


In [1334]:
total_releases = total_releases_01 + total_releases_02 + total_releases_03 + total_releases_04 + total_releases_05 + total_releases_06
total_releases


Out[1334]:
144378302.98

In [1336]:
total_w_saro = c01['TOTAL AMOUNT'].sum() + c02['TOTAL AMOUNT'].sum() + c03['TOTAL AMOUNT'].sum() + c04['TOTAL AMOUNT'].sum() + c05['TOTAL AMOUNT'].sum() + c06['TOTAL AMOUNT'].sum()
total_w_saro


Out[1336]:
142959703.98

All data merge


In [1337]:
c01.shape
dap_data_details = c01.append(c02).append(c03).append(c04).append(c05).append(c06)
b.shape


Out[1337]:
(2009, 13)

In [1321]:
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Vicente Sotto'] = 'Sen. Vicente Sotto III'
dap_data_details['PROPONENT'][dap_data_details.PROPONENT.str.contains('Teofisto')==True] = 'Sen. Teofisto Guingona III'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Ramon Revilla'] = 'Sen. Ramon Revilla Jr.'
dap_data_details['PROPONENT'][dap_data_details.PROPONENT.str.contains('Miriam') == True] = 'Sen. Miriam Defensor-Santiago'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Juan Ponce Enrile'] = 'Sen. Juan Ponce-Enrile'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Jinngoy Estrada'] = 'Sen. Jinggoy Estrada'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Alan Peter Cayetano'] = 'Sen. Allan Peter Cayetano'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Manny Villar'] = 'Sen. Manuel Villar'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Gringo Honasan'] = 'Sen. Gregorio Honasan'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Aquilino Pimentel'] = 'Sen. Aquilino Pimentel III'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen. Antonio Trillanes'] = 'Sen. Antonio Trillanes IV'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen Pia Cayetano'] = 'Sen. Pia Cayetano'
dap_data_details['PROPONENT'][dap_data_details.PROPONENT.str.contains('Pangilinan')==True] = 'Sen. Francis Pangilinan'
dap_data_details['PROPONENT'][dap_data_details.PROPONENT.str.contains('Osme') == True] = 'Sen. Sergio Osmeña'
dap_data_details['PROPONENT'][dap_data_details['PROPONENT']=='Sen.Francis Escudero'] = 'Sen. Francis Escudero'

dap_data_details['TOTAL AMOUNT'] = dap_data_details['TOTAL AMOUNT'] * 1000

In [1322]:
dap_data_details['TOTAL AMOUNT'].sum()


Out[1322]:
142959703980

In [1323]:
dap_data_details[['PROPONENT','TOTAL AMOUNT']].groupby(['PROPONENT']).sum().sort(columns='TOTAL AMOUNT', ascending=False)


Out[1323]:
TOTAL AMOUNT
PROPONENT
DOF-BSP 17476515000
DPWH 15324950323
DILG 12528392187
NHA 11050000000
BSP 10000000000
DA 4778886775
DOTC 4544171000
DedEd 4070722000
PNP, CHED, MMDA, OP 3796351000
DBM,GSIS & DepEd 3461685000
PNP 2860704627
Bureau of Customs 2799611000
see details in annex 2588821499
DOST 2565000000
DOF 2523485000
details in annex 2436434750
DOT 2299198650
DSWD 2073856856
LRTA 1867512000
NEA 1864000000
OP-OPAPP 1819000000
0 1610559415
PHIC 1496103000
DAR 1299717004
TESDA 1100000000
CAAP 1000000000
NIA 950000000
Rep. Abad- P10M; Rep. Abaya- P10M; Rep. Acop- 10M; Rep. Alcala- P10M; Rep. Almonte-P10M; Rep. Amante- P10M; Rep. Amatong- P10M; Rep. Apacible-P10M; Rep. Apostol-P10M; Rep Apsay-P10M; Rep. Arago-P10M; Rep. Asilo-P10M; Rep. Bagatsing-P10M; Rep. Baguilat-P10M; Rep. Balindong-P10M; Rep. Banal-P10M; Rep. Bautista-P10M; Rep. Belmonte V.-P10M; Rep. Benitez-P10M; Rep. Bernos- P10M; Rep. Biazon-P10M; Rep. Calixto-Rubiano-P10M; Rep. Cari-P10M; Rep. Castelo-P10M; Rep. Catamco-P10M; Rep. Cerafica-P10M; Rep. Climaco-P10M; 819000000
BIR 758385000
NDA 730000000
PIDS 660000000
TIEZA 650000000
PPC 644000000
DBM 605077000
LWUA 500000000
PCA 500000000
TPB (Tourism Promotion Board) 500000000
PFDA 500000000
DOLE-TESDA 500000000
HGC 400000000
PHC 357000000
PCOO 342536605
TRC 336000000
Sen. Francis Pangilinan 327840575
Sen. Teofisto Guingona III 326450000
PCIEETRD 300000000
DOH 294000000
Province of Leyte 285137607
PCMC 280000000
LLDA 270000000
Sen. Franklin Drilon 261260000
COP 250000000
DND-PSG 248327000
OEO-OPAPP 248253000
Sen. Juan Ponce-Enrile 239000000
Sen. Gregorio Honasan 238000000
Mayor Carmen Petilla 237697724
BFAR 237500000
Sen. Francis Escudero 235500000
Sen. Aquilino Pimentel III 233100000
MMDA 230000000
Sen. Ralph Recto 225170000
Sen. Vicente Sotto III 214000000
Cong. Joseph Abaya 213250000
Sen. Loren Legarda 200000000
Sen. Jinggoy Estrada 198750000
BOC 192640000
Sen. Pia Cayetano 176050000
Rep. Feliciano Belmonte 171500000
DAP 170000000
Sen. Sergio Osmeña 165352000
Sen. Edgardo Angara 153900000
Sen. Allan Peter Cayetano 150000000
COA 143700000
Mayor Oscar Rodriguez 134300000
Cong. Edgar San Luis 131208500
Cong. Feliciano Belmonte, Jr. 124750000
Cong. Neptali Gonzales II 116000000
Sen. Ramon Revilla Jr. 115000000
Sen. Manuel Villar 105000000
LCP 105000000
DOTC-PCG 104673000
Sen. Ferdinand Marcos 100000000
Sen. Miriam Defensor-Santiago 100000000
Sen. Antonio Trillanes IV 100000000
Sen. Manuel Lapid 100000000
Gov. Jericho Petilla 98000000
Cong. Florencio 'Bem' Noel 94000000
Gov. Victor Tanco 87000000
Rep. Neptali Gonzales 85000000
Gov. Oscar Moreno 81520000
Mayor Rodrigo Duterte 80000000
Gov. Arthur Defensor 79300000
CIC 75000000
Cong. Danilo Suarez 70000000
Gov. Paul Daza 70000000
DOLE 69113340
Rep. Henedina Abad 66618780
Congw. Jocelyn Limkaichong 59500000
Rep. Ayong Maliksi 59479000
PCED 58335000
Cong. Ayong Maliksi 57915200
Gov. Joey S. Salcedo 55000000
Mayor Evelyn Uy 54165000
Mayor Hernani Braganza 52700000
Rep. Lorenzo Tanada 52500000
Cong. Isidro Ungab 52500000
Cong. Raul Daza 52165446
Carmona, Cavite 52084800
Mayor Darlene Antonino-Custodio 50000000
NAP (National Archives of the Philippines) 50000000
Rep. Florencio Noel 50000000
Rep. Joseph Emilio Abaya 48250000
Rep. Raul Daza 45000000
Mayor Sandy Javier 44489035
Rep. Abayon - P2M; Rep. Aglipay - P4.35M; Rep. Batocabe - P2M; Rep. Briones - P1M; Rep. Co - P5M; Rep. Cortuna - P5M; Rep. Ferriol - P5M; Rep. Garbin - P5M; Rep. Gunalao-3M; Rep. D Kho-P2M; Rep. Marcoleta-5M; Rep. Piamonte- 2.5M; Rep. M. Rodriguez- 1M 42850000
Rep. Zenaida Angping 41100000
Rep. Arnulfo Fuentebella 40000000
Cong. Arnulfo Fuentebella 39000000
Mayor Zenaida Mendoza 38000000
Cong. Lorenzo Tañada 36366000
Mayor Alfredo Lim 36000000
VM Edgar Erice 35500000
Rep. Edcel Lagman 35000000
Rep. Isabelle Climaco 33400000
Gov. Eduardo Firmalo 32250000
Rep. Elpidio Barzaga 30000000
Rep. Ana York Bondoc 30000000
Gov. Alfredo Maranon 30000000
Rep. Jorge Banal 30000000
Rep. Dakila Cua 30000000
Gov. Sol Matugas 30000000
Rep. Josephine Joson 30000000
Rep. Rolando Andaya 30000000
PAF 29800000
Rep. Josephine Lacson-Noel 29000000
Cong. Rex Gatchalian 25850000
Gov. Edgardo Tallado 25000000
Cong. Elpidio Barzaga 25000000
Rep. Salvador Escudero 25000000
Rep. Pablo Garcia 25000000
Cong. Rolando Andaya 25000000
Rep. Neil Tupas 25000000
Rep. Evita Arago 25000000
Rep. Crispin Remulla 25000000
Rep. Jocelyn Limkainchong 25000000
Gov. Adiong Mamintal; Gov. Miguel Rene Dominguez; Gov. Esmael Mangudadatu; Gov. Arturo Y. Pingoy Jr; Gov. Emmylou Talino-Mendoza 25000000
Reps. Sherwin Tugna/ Rep. Cinchona Cruz-Gonzales (CIBAC) 25000000
Mayor Roque Verzosa, Jr. 24000000
Mayor Darlene Antonio-Custodio 23500000
Cong. Roberto Puno 22500000
Cong. Pablo Garcia 22500000
Cong. Romero Quimbo 22000000
Rep. Joaquin Nava 22000000
Municipality of Manaoag 21800000
LGUs in Bataan 21200000
Rep. Joseph Violago 20902661
Mayor James Gordon, Jr. 20081083
Rep. Rufus Rodriguez 20000000
Cong. Rodolfo Antonino 20000000
Cong. Rufus Rodriguez 20000000
Cong. Neil Tupas 20000000
Rep. Thelma Almario 20000000
Rep. Rodolfo Farinas 20000000
Mayor Gulam S. Hataman 20000000
Rep. Vincent Crisologo 20000000
Gov. Vilma Santos-Recto 20000000
Rep. Pangalian Balindong 20000000
Gov. Vicente S. Gato 20000000
Gov. Hadji Sadikula Sahali 20000000
Film Development Council of the Philippines 20000000
Go. Joey S. Salceda 20000000
Gov. Abdusakur Tan 20000000
Gov. Abraham Kahlil Mitra 20000000
Gov. Alfonso Umali 20000000
Gov. Arturo Uy 20000000
Gov. Carlos Jericho Petilla 20000000
Gov. Carmencita Reyes 20000000
Rep. Narciso Bravo 20000000
Rep. Isidro Ungab 20000000
Gov. Edgardo M. Chatto 20000000
Gov. Elias Bulut Jr. 20000000
Gov. Esmael Mangudadatu 20000000
Gov. Rodolfo Del ROsario 20000000
Gov. Eugene Balitang 20000000
Rep. Edgar San Luis 20000000
Gov. Jun J. Akbar 20000000
Rep. Rene Relampagos 20000000
Gov. Nestor B. Fongwan 20000000
Mayor Oscar ROdriguez 20000000
Gov. Mamintal Adiong Jr. 20000000
Rep. Nur Jaafar 20000000
Mayor Ricardo L. Suarez 20000000
Gov. Josephine Sato 20000000
Congw. Evita Arago 20000000
Rep. Oscar Malapitan 20000000
Cong. Enrique Cojuangco 19900000
Cong. Rodante Marcoleta 19704000
Rep. Jocelyn Limkaichong 19200000
Rep. Rex Gatchalian 19000000
Cong. Edcel Lagman 18500000
Mayor William Jao 18000000
Mayors Arnold Betita, Rene Cordero, Milliard Villanueva, Roel Belleza, Filomeno Ganzon, Peter Paul Lopez, Neptali Salcedo 18000000
OP 17940000
Congw. Janette Garin 17500000
Sen. Joker Arroyo 17000000
Mayor Alfonso Llopis 16154790
Congw. Anna York Bondoc 16000000
Cong. Florencio 'Bem' Noel 16000000
Gov. Josephine Ramirez-Sato 16000000
Congw. Zenaida Angping 15000000
Gov. Hadji Sadikula Sahali ; Gov. Abdusakur Tan 15000000
Cong. Gabriel Quisumbing 15000000
Cong. Dakila Cua 15000000
Cong. Mel Senen Sarmiento 15000000
Cong. Oscar Malapitan 15000000
Cong. JC Rahman Nava 15000000
Congw. Josefina Joson 15000000
Cong. Joseph Violago 15000000
Mayor Maria Fe Abunda 15000000
Cong. Rene Relampagos 15000000
Cong. Rodolfo Fariñas 15000000
Gov. Mohammad Khalil Dimaporo; Rep. Herminia D. Ramiro; Gov. Jurdin Jesus Romualdo 15000000
Rep. Lorenzo Tanada III 15000000
Congw. Josephine Lacson-Noel 15000000
Rep. Roberto Puno 15000000
Mayor Karen Villanueva 15000000
Gov. Junie Cua; Gov. Luisa Cuaresma; Gov. Faustino Dy III 15000000
Rep. Neil Benedict Montejo 14000000
Cong. Narciso Bravo 14000000
VM Lawrence Fortun 14000000
Cong. Nur Jaafar 12500000
Mayor Arcadio Gorriceta 12500000
Gov. Conrado Nicart, Jr. 12000000
Mayor Ruth Guingona 12000000
Prov. of Samar 11000000
Cong. Rosendo Labadlabad 11000000
Congw. Maria Isabelle Climaco 10500000
Cong. Loreto Leo Ocampos 10500000
Rep. Maximo Rodriguez 10500000
Mayor Virgilio Bote 10078000
Rep. Nelson Collantes 10000000
Gov. Jocel C. Baac, Gov. Eustaquio Bersamin 10000000
Rep. Pablo John Garcia 10000000
Gov. Arthur Defensor; Gov. Carlito S. Marquez 10000000
Rep. Carmen Zamora-Apsay 10000000
Gov. Bellaflor Angara-Castillo ; Gov. Aurelio Umali 10000000
Rep. Cesar Sarmiento 10000000
Rep. Jim Hataman-Saliman 10000000
Rep. Jaye Lacson-Noel 10000000
Gov. Johnny T. Pimentel; Gov. Adolp Edward Plaza 10000000
Congw. Gina de Venecia 10000000
Rep. Neri Colmenares 10000000
Rep. Enrique Cojuangco 10000000
Rep. Edwin Olivarez 10000000
Rep. Josefina Joson 10000000
Rep. Eleanor Bulut-Begtang 10000000
Rep. Isidro Lico 10000000
Rep. Emi Calixto-Rubiano 10000000
Cong. Benjamin Asilo 10000000
Rep. Giorgidi Aggabao 10000000
Cong. Carlos Padilla 10000000
Rep. Marlyn Primicias-Agabas 10000000
Rep. Benjamin Asilo 10000000
Cong. David Kho 10000000
Congw. Thelma Almario 10000000
Rep. Mark Lleandro Mendoza 10000000
Rep. Romero Quimbo 10000000
Cong. Joseph Abaya 10000000
NCIP 10000000
Mayor Gold Calibo 10000000
Rep. Sherwin Tugna 10000000
Cong. Amado Bagatsing 10000000
Mayor Ronaldo Aquino 10000000
Rep. Tupay Loong 10000000
Rep. Kaka Bag-ao 10000000
Cong. Henedina Abad 10000000
Mayor Carmen Cari 10000000
Mayor Gloria Congo 10000000
Cong. Pablo John Garcia 10000000
Rep,. Florencio Noel 10000000
Cong. Eleandro Madrona 10000000
00329- Rep. Rosenda Ann Ocampo, 00331-Rep. Carlo Lopez 10000000
Rep. Rodolfo Antonino 10000000
Rep. Rodel Batocabe 10000000
Rep. Rodante Marcoleta 10000000
Rep. Jose Maria Zubiri 10000000
Rep. Reynaldo Umali 10000000
Rep. Alfredo Benitez 10000000
Cong. Roy Duavit 10000000
Rep. Antonio Alvarez 10000000
Cong. Tomas Apacible 10000000
Rep. Juan Edgardo Angara 10000000
Cong. Mark Llandro Mendoza 9500000
Cong. Rodolfo Biazon 9000000
BM Eunice Babalcon 9000000
Cong. Sergio Apostol 8700000
Gov. Norris Babiera 8305000
Mayor Ferdinand Abesamis 8066000
Cong. Reynaldo Umali 8000000
Rep. Rosendo Labadlabad 7852941
Rep. Irvin Alcala 7500000
Cong. Pangalian Balindong 7500000
Cong. Pangalian Balindong 7500000
Cong. Vincent Crisologo 7500000
Cong. Ben Evardone 7500000
Congw. Isabelle Climaco 7500000
DOj 7000000
Rep. Jerry Trenas 7000000
Rep. Eufranio Eriguel 7000000
Cong. Jerry Treñas 7000000
Cong. Maria Isabelle Climaco 7000000
Cong. Rey Umali 7000000
Mayor Remedios Petilla 6713392
Mayor Ferdinand Amante 6600000
Mayor Marcelo Navarro 6430000
Rep. Janette L. Garin 6400000
Mayor Christian Tinio 6300000
DepEd 6214000
Rep. Mark Liandro Mendoza 6000000
Cong. Antonio Alvarez 6000000
Rep. Edwin Olivares 6000000
Cong. Philip Pichay 5950000
Brgy. Chairman Marcelo Narag 5900000
Rep. Rosenda Ann Ocampo 5500000
Rep. Carlos Padilla 5500000
Rep. Carlo Lopez 5500000
Gor. Victor Yap 5000000
Gov. Alex P. Calingasan 5000000
Cong. Joselito Mendoza 5000000
Rep. Ma. Isabelle Climaco 5000000
Gov. Casimiro Ynares III 5000000
Gov. Douglas Cagas 5000000
Mayor Coefredo Uy 5000000
Rep. Bernadette Herrrera-Dy 5000000
Rep. Sharon Garin 5000000
Rep. Carol Jayne Lopez 5000000
Rep. Rodolfo Biazon 5000000
Rep. Lucy Torres-Gomez 5000000
Mayor Kit Marc Adanza/Mayor Karen Villanueva 5000000
Cong. Carlo Lopez 5000000
Gov. Roel Degamo 5000000
Rep. Godofredo Arquiza 5000000
Gov. Joseph Cua 5000000
Gov. Manuel C. Ortega 5000000
Vice Gov. Rodito Albano 4938000
PA 4756000
Rep. Joselito Mendoza 4750000
Cong. Niel Tupas, Jr. 4558895
Rep. Arturo Robes 4500000
Mayor Kim Amador 4500000
Mayor Jose Esgana 4479520
Cong. Lorenzo Tañada 4440000
DOJ 4200000
Cong. Philip Pichay 4050000
Alfonso, Cavite 4000000
Rep. Julio Ledesma 4000000
Rep. Mark Llandro Mendoza 4000000
Various Baranggays in Manaoag, Pangasinan 4000000
Rep. Jose Ping-ay 4000000
Rep. Alejandro Mirasol 4000000
Mayor Jose Mario Pahang 3750000
Rep. Mercedes Navarro 3750000
Rep. Janette Garin 3600000
Brgy. Chairman Rizalino Luyun 3503000
Cong. Narciso Bravo/Cong. Isidro Ungab (G-12-01014) 3500000
Brgy. Capt. Edgardo Aguas 3500000
Mayor Kit Marc Adanza 3000000
Mayor Alexander de Paz 3000000
Rep. Agapito Guanlao-2M Rep. David Kho- 1M 3000000
BM Nancy Corazon Bacurnay 3000000
Rep Joaquin Nava 3000000
Rep. Abayon - P1M - Rep. Aglipay - P0.15M; Rep. Estrella - P0.35M; Rep. Rep D. Kho - P0.5M; Rep. Ping-ay - P1M 3000000
Rep. Eurfranio Eriguel 3000000
Rep. Mark Aeron Sambar 3000000
Gov. Edgardo Chatto 3000000
Rep. Ben Evardone 2500000
Rep. Mariano Piamonte 2500000
Rep. Abayon - P0.25M; Rep. Aglipay - P0.1M; Rep. Estrella - P0.5M; Rep. D Kho - P0.5M; Rep. Benedict Montejo - P1M 2350000
Rep. Robert Estrella 2200000
Cong. Lorenzo Tañada 2000000
Cong. Anthony Del Rosario 2000000
Cong. Florencio Noel 2000000
Province of Samar 2000000
Gov. Edgar Chatto 2000000
Mayor Juan Toreja 2000000
Rep. Mylene Albano 2000000
Mayor Cynthia Linao-Estanislao 2000000
Municipality of Gumaca & Plaridel, Quezon 1800000
Rep. Maria Isabelle Climaco 1600000
Rep. Ronald Cosalan 1600000
Rep. Nicanor Briones 1500000
Rep Carlos Padilla 1500000
Rep. Abayon - P0.5M; Rep. Aglipay - P0.1M; Rep. Estrella - P0.35M; Rep. D. Kho - P0.5M 1450000
Rep. Josephiine Lacson-Noel 1000000
Rep. Rex. Gatchalian 1000000
Mayor Ligaya Apura 1000000
Rep. David Kho 500000
Rep. Erineo Maliksi 500000
Rep Lorenzo Tanada 500000
Rep.. Feliciano Belmonte 500000
Rep. Emmeline Aglipay 300000
Rep. Daryl Grace Abayon 250000
Rep. Manuel Agyao 250000
Realignment -2000000

MISSING PROPONENTS WITH SARO


In [1338]:
missing_proponent = ['see details in annex','details in annex',]
proponents_who = dap_data_details[dap_data_details['PROPONENT'].isin(missing_proponent)]
proponents_who[['DESCRIPTION','TOTAL AMOUNT']].groupby('DESCRIPTION').sum().sum()


Out[1338]:
TOTAL AMOUNT    5025256.249
dtype: float64

Endorsement from Senate


In [1331]:
porkers_details = dap_data_details[dap_data_details.PROPONENT.str.contains('Sen')==True]
porkers_details['PROPONENT'].apply(lambda x: x.strip())
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Vicente Sotto'] = 'Sen. Vicente Sotto III'
porkers_details['PROPONENT'][porkers_details.PROPONENT.str.contains('Teofisto')] = 'Sen. Teofisto Guingona III'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Ramon Revilla'] = 'Sen. Ramon Revilla Jr.'
porkers_details['PROPONENT'][porkers_details.PROPONENT.str.contains('Miriam')] = 'Sen. Miriam Defensor-Santiago'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Juan Ponce Enrile'] = 'Sen. Juan Ponce-Enrile'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Jinngoy Estrada'] = 'Sen. Jinggoy Estrada'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Alan Peter Cayetano'] = 'Sen. Allan Peter Cayetano'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Manny Villar'] = 'Sen. Manuel Villar'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Gringo Honasan'] = 'Sen. Gregorio Honasan'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Aquilino Pimentel'] = 'Sen. Aquilino Pimentel III'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen. Antonio Trillanes'] = 'Sen. Antonio Trillanes IV'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen Pia Cayetano'] = 'Sen. Pia Cayetano'
porkers_details['PROPONENT'][porkers_details.PROPONENT.str.contains('Pangilinan')] = 'Sen. Francis Pangilinan'
porkers_details['PROPONENT'][porkers_details.PROPONENT.str.contains('Osme')] = 'Sen. Sergio Osmeña'
porkers_details['PROPONENT'][porkers_details.PROPONENT=='Sen.Francis Escudero'] = 'Sen. Francis Escudero'

porkers = porkers_details[['PROPONENT','TOTAL AMOUNT']]
porkers['TOTAL AMOUNT'].sum()


Out[1331]:
3942770.575

In [ ]:
porkers.groupby('PROPONENT').sum().sort(columns='TOTAL AMOUNT',ascending=False)

In [ ]:
senator = 'Pangilinan'
projects = porkers_details[porkers_details.PROPONENT.str.contains(senator)]
projects[['PROJECT_NAME','DESCRIPTION','TOTAL AMOUNT']].groupby(['PROJECT_NAME','DESCRIPTION']).sum().sort(columns='TOTAL AMOUNT',ascending=False)

Congress Endorsement


In [ ]:
porkers_details = dap_data_details[dap_data_details.PROPONENT.str.contains('Cong|Rep')==True]
porkers_details[['PROPONENT','TOTAL AMOUNT']].groupby('PROPONENT').sum().sort(columns='TOTAL AMOUNT',ascending=False)
#porkers_details['TOTAL AMOUNT'].sum()

PROPONENT PROJECTS


In [ ]:
cong = 'Cong. Neil Tupas'
projects = porkers_details[porkers_details.PROPONENT.str.contains(cong)]
projects[['PROJECT_NAME','DESCRIPTION','TOTAL AMOUNT']].groupby(['PROJECT_NAME','DESCRIPTION']).sum().sort(columns='TOTAL AMOUNT',ascending=False)

DAP Proponent (in Thousand Pesos): Mayor Carmen Petilla & Leyte & Gov. Jericho Petilla & Mayor Remedios Petilla


In [ ]:
proponent = ['Mayor Carmen Petilla','Province of Leyte','Gov. Jericho Petilla','Mayor Remedios Petilla','Gov. Carlos Jericho Petilla']
proponent_project = dap_data_details[['PROJECT_NAME','DESCRIPTION','TOTAL AMOUNT','PROPONENT','Remarks']][dap_data_details.PROPONENT.str.contains('Petilla|Leyte')==True].sort(ascending=False,columns='TOTAL AMOUNT')

In [ ]:
proponent_project['TOTAL AMOUNT'].sum()*1000

In [ ]:
proponent_project

Mayor Oscar Rodriguez


In [ ]:
proponent = ['Mayor Oscar Rodriguez']
proponent_project = dap_data_details[['PROJECT_NAME','DESCRIPTION','TOTAL AMOUNT','PROPONENT']][dap_data_details['PROPONENT'].isin(proponent)].sort(ascending=False,columns='TOTAL AMOUNT')
proponent_project

LGU Proponents


In [ ]:
porkers_details = dap_data_details[dap_data_details.PROPONENT.str.contains('Gov|Mayor')==True]
porkers_details[['PROPONENT','TOTAL AMOUNT']].groupby('PROPONENT').sum().sort(columns='TOTAL AMOUNT',ascending=False)
porkers_details['TOTAL AMOUNT'].sum()

In [ ]:
cong = 'ayor Rodrigo Duterte'
projects = porkers_details[porkers_details.PROPONENT.str.contains(cong)]
projects[['PROJECT_NAME','DESCRIPTION','TOTAL AMOUNT']].groupby(['PROJECT_NAME','DESCRIPTION']).sum().sort(columns='TOTAL AMOUNT',ascending=False)

DAP for Floods


In [ ]:
dap_data_details[['PROJECT_NAME','Remarks','TOTAL AMOUNT']][dap_data_details.PROJECT_NAME.str.contains('Flood')==True]

In [ ]:
flood = dap[dap.Description.str.contains('flood')]
#flood[['Proposed','Released']].sum()
flood[['Tranche','Department','Agency','Proposed','Released']]

In [ ]:
dap_data_details['PORKERS'] = 0
dap_data_details['PORKERS'][dap_data_details.PROPONENT.str.contains('Cong|Rep')==True] =  'CONGRESS'
dap_data_details['PORKERS'][dap_data_details.PROPONENT.str.contains('Gov|Mayor')==True] =  'LGU'
dap_data_details['PORKERS'][dap_data_details.PROPONENT.str.contains('Sen')==True] =  'SENATE'

missing_proponent = ['see details in annex','details in annex']
dap_data_details['PORKERS'][dap_data_details.PROPONENT.str.contains('Cong. Mel Senen Sarmiento')==True] =  'CONGRESS'
dap_data_details['PORKERS'][dap_data_details['PROPONENT'].isin(missing_proponent)] =  'MISSING PROPONENT'

In [1339]:
#dap_data_details.to_csv('DAP_W_PROPONENTS_CLEAN.csv')
dap_data_details['TOTAL AMOUNT'].sum()


Out[1339]:
142959703.98

In [ ]:
def convert_amount(x):
    try:
        x.strip()
        x = "".join(x.split(','))
    except:
        float(x)
        
    return float(x)

In [ ]: