In [7]:
import sys
from random import random
from operator import add
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("PythonPi").getOrCreate()
partitions = 100
n = 100000 * partitions
def f(_):
x = random() * 2 - 1
y = random() * 2 - 1
return 1 if x ** 2 + y ** 2 <= 1 else 0
count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n))
spark.stop()
In [ ]: