In [1]:
import numpy as np
import theano
import theano.tensor as T
import matplotlib.pyplot as plt
%matplotlib inline

class Layer(object):
    def __init__(self, inputs, in_size, out_size, activation_function=None):
        self.w = theano.shared(np.random.normal(0,1,(in_size, out_size)))
        self.b = theano.shared(np.zeros(out_size,) + 0.1)
        self.wx_plus_b = T.dot(inputs, self.w) + self.b
        self.activation_function = activation_function
        if activation_function == None:
            self.outputs = self.wx_plus_b
        else:
            self.outputs = self.activation_function(self.wx_plus_b)
# Make up some fake data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise        # y = x^2 - 0.5

# show the fake data
plt.scatter(x_data, y_data)
plt.show()



In [7]:
#determine the inputs dtype
x, y = T.dmatrices('x', 'y')

l1 = Layer(x, 1, 10, T.nnet.relu)
l2 = Layer(l1.outputs, 10, 1, None)

#cost
cost = T.mean(T.square(l2.outputs - y))

#gradients
gw1, gb1, gw2, gb2 = T.grad(cost, [l1.w, l1.b, l2.w, l2.b])

#gradients descent
learning_rate = 0.05

train = theano.function([x,y], cost, updates=[(l1.w, l1.w - learning_rate * gw1), (l1.b, l1.b - learning_rate * gb1),
                       (l2.w, l2.w - learning_rate * gw2), (l2.b, l2.b - learning_rate * gb2)])
#prediction
predict = theano.function([x], l2.outputs)

#plot
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()

for i in np.arange(1000):
    err = train(x_data, y_data)
    if i % 50 == 0:
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        predicted_value = predict(x_data)
        lines = ax.plot(x_data, predicted_value,'r', lw=5)
        plt.pause(1)