In [9]:
import pandas as pd
import numpy as np

dates = pd.date_range('20161010', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])

df.iloc[2,2] = 1111
df.loc['20161011', 'D'] = 2222
df


Out[9]:
A B C D
2016-10-10 0 1 2 3
2016-10-11 4 5 6 2222
2016-10-12 8 9 1111 11
2016-10-13 12 13 14 15
2016-10-14 16 17 18 19
2016-10-15 20 21 22 23

In [14]:
df['E'] = np.nan
df['G'] = pd.Series([1,2,3,4,5,6],index=pd.date_range('20161010', periods=6))
df


Out[14]:
A B C D E G
2016-10-10 0 1 2 3 NaN 1
2016-10-11 4 5 6 2222 NaN 2
2016-10-12 8 9 1111 11 NaN 3
2016-10-13 12 13 14 15 NaN 4
2016-10-14 16 17 18 19 NaN 5
2016-10-15 20 21 22 23 NaN 6