Euler Problem 18

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

   3
  7 4
 2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

                            75
                          95  64
                        17  47  82
                      18  35  87  10
                    20  04  82  47  65
                  19  01  23  75  03  34
                88  02  77  73  07  63  67
              99  65  04  28  06  16  70  92
            41  41  26  56  83  40  80  70  33
          41  48  72  33  47  32  37  16  94  29
        53  71  44  65  25  43  91  52  97  51  14
      70  11  33  28  77  73  17  78  39  68  17  57
    91  71  52  38  17  14  91  43  58  50  27  29  48
  63  66  04  68  89  53  67  30  73  16  69  87  40  31
04  62  98  27  23  09  70  98  73  93  38  53  60  04  23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)


In [1]:
s = """
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""

T = list(map(int, s.split()))
W = [0]*120
W[0] = T[0]
k = 1
for i in range(1,15):
    W[k] = T[k] + W[k-i]
    W[k+i] = T[k+i] + W[k-1]
    for j in range(k+1, k+i):
        W[j] = T[j] + max(W[j-i],W[j-i-1])
    k += i + 1

print(max(W[-15:]))


1074

In [ ]: