Using Fullfillment labor material


In [1]:
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn import cross_validation
from sklearn.metrics import roc_auc_score

In [2]:
#donations = pd.read_csv('../data/donations.csv').sort('projectid')
projects = pd.read_csv('../data/projects.csv').sort('projectid')
outcomes = pd.read_csv('../data/outcomes.csv').sort('projectid')
#resources = pd.read_csv('../data/resources.csv').sort('projectid')
sample = pd.read_csv('../data/sampleSubmission.csv').sort('projectid')
#essays = pd.read_csv('../data/essays.csv').sort('projectid')

In [3]:
projects = projects.merge(outcomes, how ='inner')
dates = np.array(projects.date_posted)
train_idx = np.where((dates < '2013-05-01') & (dates >= '2010-01-01'))[0]
test_idx = np.where(dates >= '2013-05-01')[0]
outcomes = np.array(projects.is_exciting)

In [4]:
projects.secondary_focus_area = projects.secondary_focus_area.fillna(projects.primary_focus_area)
projects.secondary_focus_subject = projects.secondary_focus_subject.fillna(projects.primary_focus_subject)
projects = projects.fillna(method='pad')

projects['month'] = ''
projects['total_price'] = 0
projects['student'] = 0
for i in range(0,projects.shape[0]):
    projects['month'][i] = projects.date_posted[i][5:7]
    
    totalPrice = projects.total_price_excluding_optional_support[i]
    if(totalPrice < 250):
        projects.total_price[i] = 0
    elif ((totalPrice >= 250)&(totalPrice < 400)):
        projects.total_price[i] = 1
    elif((totalPrice >= 400)&(totalPrice < 600)):
        projects.total_price[i] = 2
    elif((totalPrice >= 600)&(totalPrice < 10000)):
        projects.total_price[i] = 3
    elif((totalPrice >= 10000)&(totalPrice < 100000)):
        projects.total_price[i] = 4
    else:
        projects.total_price[i] = 5
        
    studentNo = int(projects.students_reached[i])
    if(studentNo == 0):
        projects.student[i] = 0
    elif(studentNo <100):
        projects.student[i] = (studentNo/5) + 1
    elif(studentNo <= 500):
        projects.student[i] = 100
    else:
        projects.student[i] = 1000

In [5]:
cols = ['school_city', 'school_state', 'school_zip', 'school_metro', 'school_district', 'school_county', 'school_charter', 'school_magnet',
 'school_year_round', 'school_nlns', 'school_kipp', 'school_charter_ready_promise', 'teacher_prefix', 'teacher_teach_for_america', 'teacher_ny_teaching_fellow', 'primary_focus_subject','primary_focus_area', 
'secondary_focus_subject', 'secondary_focus_area', 'resource_type', 'poverty_level', 'grade_level',
'students_reached', 'eligible_double_your_impact_match', 'eligible_almost_home_match','month', 'total_price','student' ]
projects = np.array(projects[cols])

In [6]:
for i in range(0, projects.shape[1]):
    le = LabelEncoder()
    projects[:,i] = le.fit_transform(projects[:,i])
projects = projects.astype(float)

In [7]:
train, crossval, outcomeTrain, outcomeCrossVal = projects[train_idx], projects[test_idx], outcomes[train_idx], outcomes[test_idx]
model = RandomForestClassifier(n_estimators = 100, criterion = 'entropy', n_jobs = -1)
model.fit(train, outcomeTrain=='t')
preds3 = model.predict_proba(crossval)[:,1]

In [8]:
ohe = OneHotEncoder()
projects = ohe.fit_transform(projects)

In [9]:
train, crossval, outcomeTrain, outcomeCrossVal = projects[train_idx], projects[test_idx], outcomes[train_idx], outcomes[test_idx]

In [10]:
model = LogisticRegression(C = .1,class_weight = 'auto')
model.fit(train, outcomeTrain=='t')
preds1 = model.predict_proba(crossval)[:,1]

model = SGDClassifier(alpha = 0.001, loss = 'modified_huber', penalty = 'l2', n_iter = 1000, n_jobs = -1,class_weight = 'auto')
model.fit(train, outcomeTrain=='t')
preds2 = model.predict_proba(crossval)[:,1]

In [11]:
preds = 0.6*preds1 + 0.2*preds2 + 0.2*preds3

In [12]:
value = roc_auc_score(outcomeCrossVal=='t', preds)
value


Out[12]:
0.63001955133538423