In [1]:
import pandas as pd
import numpy as np
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from datetime import datetime
In [2]:
startTime = datetime.now()
In [3]:
#donations = pd.read_csv('../data/donations.csv').sort('projectid')
projects = pd.read_csv('../data/projects.csv').sort('projectid')
outcomes = pd.read_csv('../data/outcomes.csv').sort('projectid')
#resources = pd.read_csv('../data/resources.csv').sort('projectid')
sample = pd.read_csv('../data/sampleSubmission.csv').sort('projectid')
#essays = pd.read_csv('../data/essays.csv').sort('projectid')
In [4]:
dates = np.array(projects.date_posted)
train_idx = np.where(dates < '2014-01-01')[0]
test_idx = np.where(dates >= '2014-01-01')[0]
In [5]:
projects = projects.fillna(method='pad')
In [6]:
outcomes = np.array(outcomes.is_exciting)
In [7]:
projectCatogorialColumns = ['school_city', 'school_state', 'school_zip', 'school_metro', 'school_district', 'school_county', 'school_charter', 'school_magnet',
'school_year_round', 'school_nlns', 'school_kipp', 'school_charter_ready_promise', 'teacher_prefix', 'teacher_teach_for_america', 'teacher_ny_teaching_fellow', 'primary_focus_subject','primary_focus_area',
'secondary_focus_subject', 'secondary_focus_area', 'resource_type', 'poverty_level', 'grade_level',
'students_reached', 'eligible_double_your_impact_match', 'eligible_almost_home_match' ]
latitudeLongitudeColumns = ['school_latitude', 'school_longitude']
In [8]:
latitudeLongitude = np.array(projects[latitudeLongitudeColumns])
latitudeLongitude = np.ceil(latitudeLongitude)
latitudeLongitude[:,0] = 180*latitudeLongitude[:,0]+latitudeLongitude[:,1]
In [9]:
data = np.array(projects[projectCatogorialColumns])
data = np.column_stack((data,latitudeLongitude[:,0]))
del projects, latitudeLongitude
In [10]:
for i in range(0, data.shape[1]):
le = LabelEncoder()
data[:,i] = le.fit_transform(data[:,i])
data = data.astype(float)
In [11]:
ohe = OneHotEncoder()
data = ohe.fit_transform(data)
In [12]:
train = data[train_idx]
test = data[test_idx]
del data
In [13]:
model = SGDClassifier(alpha = 0.001, loss = 'modified_huber', penalty = 'l2', n_iter = 1000, n_jobs = -1)
model.fit(train, outcomes=='t')
Out[13]:
In [14]:
preds = model.predict_proba(test)[:,1]
In [15]:
endTime = datetime.now()
In [16]:
sample['is_exciting'] = preds
sample.to_csv('predictions.csv', index = False)
In [17]:
print endTime - startTime