In [1]:
from physlearn.NeuralNet.NeuralNet import NeuralNet
from physlearn.examples import Titanic
import matplotlib.pyplot as plt
%matplotlib inline
In [ ]:
(learn_data, learn_output), (cv_data, cv_output) = Titanic.create_datasets(0.2)
In [ ]:
net = NeuralNet(-7, 7)
In [ ]:
net.add_input_layer(3)
net.add(100, net.sigmoid)
net.add(100, net.sigmoid)
net.add_output_layer(1, net.sigmoid)
In [ ]:
net.compile()
In [ ]:
net.set_train_type('logistic')
In [ ]:
cost_list = net.train(learn_data, learn_output, 50, 100000, 0.001)
plt.plot(cost_list)
In [ ]:
net.calculate_cost(learn_data, learn_output)
In [ ]:
net.calculate_cost(cv_data, cv_output)
In [ ]:
ok_class = 0
output = net.run(learn_data)[0]
pred_clases = []
for item in output:
if item >= 0.5:
pred_clases.append(1)
else:
pred_clases.append(0)
for index, _ in enumerate(pred_clases):
if pred_clases[index] == learn_output[0][index]:
ok_class += 1
ok_percent = (ok_class / output.shape[0]) * 100
print('ok percent on learn data: ', ok_percent, '%')
In [ ]:
ok_class = 0
output = net.run(cv_data)[0]
pred_clases = []
for item in output:
if item >= 0.5:
pred_clases.append(1)
else:
pred_clases.append(0)
for index, _ in enumerate(pred_clases):
if pred_clases[index] == cv_output[0][index]:
ok_class += 1
ok_percent = (ok_class / output.shape[0]) * 100
print('ok percent on cv data: ', ok_percent, '%')