In [1]:
import numpy
from physlearn.NeuralNet.NeuralNet import NeuralNet
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline

In [2]:
x = numpy.array([[-2, -1, 0, 1, 2]])
y = numpy.array([[0, 0, 0, 1, 1]])

In [3]:
net = NeuralNet(-1, 1)

In [4]:
net.add_input_layer(1)
net.add(5, tf.sigmoid)
net.add_output_layer(1, tf.sigmoid)

In [5]:
net.compile()

In [6]:
net.set_train_type('logistic')

In [7]:
net.run(x)


Out[7]:
array([[ 0.35129324,  0.38970408,  0.43131234,  0.47554027,  0.51545544]])

In [8]:
net.calculate_cost(x, y)


Out[8]:
2.8970178614065323

In [9]:
cost_list = net.train(x, y, 5, 1000, 1)


100%|██████████| 1000/1000 [00:00<00:00, 1753.67it/s]

In [10]:
plt.plot(cost_list)


Out[10]:
[<matplotlib.lines.Line2D at 0x7f575c1dab70>]

In [16]:
net.run([[10000]])


Out[16]:
array([[ 0.99986848]])

In [ ]: