In [1]:
from physlearn.NeuralNet.NeuralNetPro import NeuralNetPro
from physlearn.examples import Titanic
from physlearn.Optimizer import NelderMead
from physlearn.Optimizer import DifferentialEvolution
import tensorflow as tf
import matplotlib.pyplot as plt
import sys
import os
%matplotlib inline
In [20]:
(learn_data, learn_output), (cv_data, cv_output) = Titanic.create_datasets(0.2)
In [21]:
net = NeuralNetPro(-5, 5)
In [22]:
net.add_input_layer(3)
net.add(5, net.sigmoid)
net.add_output_layer(1, net.sigmoid)
In [23]:
net.compile()
In [24]:
net.set_train_type('logistic')
In [25]:
net.set_random_matrixes()
In [26]:
dim = net.return_unroll_dim()
In [9]:
net.calculate_cost(learn_data, learn_output)
Out[9]:
In [10]:
def cost(params):
net.roll_matrixes(params)
return net.calculate_cost(learn_data, learn_output)
In [17]:
#res = NelderMead.optimize(cost, dim, 3000, end_method='max_iter', min_element=-7, max_element=7)
res = DifferentialEvolution.optimize(cost, 100, dim, 100)
In [29]:
net.roll_matrixes(res)
In [30]:
net.calculate_cost(learn_data, learn_output)
Out[30]:
In [31]:
net.calculate_cost(cv_data, cv_output)
Out[31]:
In [32]:
ok_class = 0
output = net.run(learn_data)[0]
pred_clases = []
for item in output:
if item >= 0.5:
pred_clases.append(1)
else:
pred_clases.append(0)
for index, _ in enumerate(pred_clases):
if pred_clases[index] == learn_output[0][index]:
ok_class += 1
ok_percent = (ok_class / output.shape[0]) * 100
print('ok percent on learn data: ', ok_percent, '%')
In [33]:
ok_class = 0
output = net.run(cv_data)[0]
pred_clases = []
for item in output:
if item >= 0.5:
pred_clases.append(1)
else:
pred_clases.append(0)
for index, _ in enumerate(pred_clases):
if pred_clases[index] == cv_output[0][index]:
ok_class += 1
ok_percent = (ok_class / output.shape[0]) * 100
print('ok percent on cv data: ', ok_percent, '%')
In [ ]: