---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-4-916b19a5603b> in <module>()
----> 1 optimisation_result = opt_nm.optimize(J, dim, 10**6, 10**(-2))
2 print("J after optimisation: ", J(optimisation_result.x))
3 net.roll_matrixes(optimisation_result.x)
4 print("Ебала: ", optimisation_result)
~\GitKraken\SPBU_COMP_PHYS_NN_QM\physlearn\physlearn\Optimizer\NelderMead\NelderMeadAbstract.py in optimize(self, func, dim, end_cond, min_cost)
125 prev_update_time = cur_time
126
--> 127 method_type = self.iteration()
128 self.variance_list.append(numpy.var(self.y_points))
129 self.types_list.append(method_type)
~\GitKraken\SPBU_COMP_PHYS_NN_QM\physlearn\physlearn\Optimizer\NelderMead\NelderMeadAbstract.py in iteration(self)
187 self.x_reflected = self.calculate_reflected_point() # Вычисляем отраженную
188 # точку
--> 189 y_reflected = self.calc_func(self.x_reflected)
190 # Далее мы делаем ряд действий, в зависимости от соотношения между значениями функции в найденных точках
191 # Объяснять подробно нет смысла, так что смотри просто "Метод Нелдера - Мида" в вики
~\GitKraken\SPBU_COMP_PHYS_NN_QM\physlearn\physlearn\Optimizer\NelderMead\NelderMead.py in calc_func(self, params)
5
6 def calc_func(self, params):
----> 7 return self.func(params)
~\GitKraken\SPBU_COMP_PHYS_NN_QM\source\CostFunction.py in J(self, params)
67 def J(self, params):
68 self.net.roll_matrixes(params)
---> 69 j = self.net.calc(self.noninvariance_factor, {self.net.x: self.approximation_grid})
70 j += self.calc_linearity_factor()
71 j += self.calc_ground_cond_factor()
~\GitKraken\SPBU_COMP_PHYS_NN_QM\physlearn\physlearn\NeuralNet\NeuralNet.py in calc(self, calc_var, d)
304 """
305 d.update(self.placeholders_dict) # Добавляем в словарь d placeholder для матриц весов
--> 306 return self.sess.run(calc_var, d)
307
308 def run(self, inputs):
D:\Anaconda\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
875 try:
876 result = self._run(None, fetches, feed_dict, options_ptr,
--> 877 run_metadata_ptr)
878 if run_metadata:
879 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
D:\Anaconda\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1098 if final_fetches or final_targets or (handle and feed_dict_tensor):
1099 results = self._do_run(handle, final_targets, final_fetches,
-> 1100 feed_dict_tensor, options, run_metadata)
1101 else:
1102 results = []
D:\Anaconda\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1270 if handle is None:
1271 return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1272 run_metadata)
1273 else:
1274 return self._do_call(_prun_fn, handle, feeds, fetches)
D:\Anaconda\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1276 def _do_call(self, fn, *args):
1277 try:
-> 1278 return fn(*args)
1279 except errors.OpError as e:
1280 message = compat.as_text(e.message)
D:\Anaconda\lib\site-packages\tensorflow\python\client\session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
1261 self._extend_graph()
1262 return self._call_tf_sessionrun(
-> 1263 options, feed_dict, fetch_list, target_list, run_metadata)
1264
1265 def _prun_fn(handle, feed_dict, fetch_list):
D:\Anaconda\lib\site-packages\tensorflow\python\client\session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
1348 return tf_session.TF_SessionRun_wrapper(
1349 self._session, options, feed_dict, fetch_list, target_list,
-> 1350 run_metadata)
1351
1352 def _call_tf_sessionprun(self, handle, feed_dict, fetch_list):
KeyboardInterrupt: