In [26]:
import torch as t
import math
import random
import numpy as np
from torch.autograd import Variable
from matplotlib import mlab
from matplotlib import pylab as plt
%matplotlib inline
def g(x, prm):
return (1/(prm[0]*math.sqrt(2*math.pi)))*t.exp(-(x-prm[1])**2/(2*prm[0]**2))
xMin = -5
xMax = 15
prmOrig = t.Tensor([1, 5])
xOrig = t.linspace(xMin, xMax, 150)
yOrig = g(xOrig, prmOrig)
plt.plot (xOrig.numpy(), yOrig.numpy(),'red')
Out[26]:
In [28]:
xOrig.size()
Out[28]:
In [27]: