In [53]:
# Необходмые команды импорта.
import sys
sys.path.append('../physlearn/')
sys.path.append('../source')
import numpy as np
from numpy import linalg as LA
import tensorflow as tf
from matplotlib import pylab as plt
import numpy.random as rand
from physlearn.NeuralNet.NeuralNet import NeuralNet
from physlearn.Optimizer.NelderMead.NelderMead import NelderMead
import math_util
import math
from mpl_toolkits.mplot3d.axes3d import Axes3D
%matplotlib notebook
def grid_vect(a, b, N):
x = np.linspace(a, b, N, endpoint=True)
h = x[1] - x[0]
return np.mgrid[a:b+h:h, a:b+h:h].reshape(2,-1).T
def get_meshgrid(a,b,N):
x = np.linspace(a, b, N, endpoint=True)
return np.meshgrid(x,x)
a = -2*math.pi
b = 2*math.pi
k = 1
sigmoid_ammount = 35
m_1 = 75
space_dim = 2
iterations = int(5e5)
max_eps = 1e-10
xy = grid_vect(a, b, m_1)
x_np = np.transpose(xy)
m = xy[:,0].size
net = NeuralNet(-5,5)
net.add_input_layer(space_dim)
net.add(sigmoid_ammount, tf.sigmoid)
net.add_output_layer(1, net.linear)
net.compile()
net.set_random_matrixes()
net_out = net.return_graph()
sess = net.return_session()
dim = net.return_unroll_dim()
f = tf.cos(k*tf.sqrt(tf.reduce_sum(tf.square(net.x), axis = 0)))
J = (tf.reduce_sum(tf.square(f - tf.reduce_sum(net_out, axis = 0))))*(1/m)
#f = tf.cos(k*x_tf)
def COST(params):
net.roll_matrixes(params)
res = net.calc(J, {net.x:x_np})
return res
opt_nm = NelderMead(-2.5,2.5, progress_bar='tqdm')
opt_nm.set_epsilon_and_sd(0.3, 100)
def opt(J, dim, n_it, eps):
optimisation_result = opt_nm.optimize(J, dim, n_it, eps)
return optimisation_result
In [54]:
nn_val = net.run(x_np)
nn_val = nn_val.reshape(1,nn_val.size)
print(nn_val.shape)
fig = plt.figure(figsize=(14,6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.plot_wireframe(xy[:,0], xy[:,1], nn_val)
Out[54]:
In [55]:
optimisation_result = opt(COST, dim, iterations, max_eps)
print("J after optimisation: ", COST(optimisation_result.x))
print("Информация: ", optimisation_result)
In [56]:
nn_val = net.run(x_np)
nn_val = nn_val.reshape(1,nn_val.size)
print(nn_val.shape)
fig = plt.figure(figsize=(14,6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.plot_wireframe(xy[:,0], xy[:,1], nn_val)
Out[56]:
In [57]:
f_true = net.calc(f, {net.x:x_np})
f_true = f_true.reshape(1,f_true.size)
print(f_true.shape)
fig = plt.figure(figsize=(14,6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.plot_wireframe(xy[:,0], xy[:,1], f_true)
Out[57]:
In [58]:
error = nn_val - f_true
print(error.shape)
fig = plt.figure(figsize=(14,6))
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.plot_wireframe(xy[:,0], xy[:,1], error)
Out[58]:
In [59]:
J_fin = optimisation_result.cost_function
mse = math_util.MSE(error)
std_err = math_util.std_err(error)
print(J_fin, ' ', mse, ' ', std_err)
In [60]:
COST(optimisation_result.x)
Out[60]: