In [0]:
import tensorflow as tf
from tensorflow import keras
In [0]:
mnist = keras.datasets.fashion_mnist
In [0]:
mnist.load_data()
In [0]:
(train_images,train_labels),(test_images,test_labels) = mnist.load_data()
In [5]:
train_images.shape
Out[5]:
In [6]:
test_images.shape
Out[6]:
In [0]:
import numpy as np
import matplotlib.pyplot as plt
In [0]:
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
In [11]:
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
In [12]:
train_images
Out[12]:
In [14]:
train_images.data
Out[14]:
In [0]:
train_images = train_images/255.0
test_images = test_images/255.0
In [16]:
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
In [17]:
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
In [0]:
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128,activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
In [0]:
model.compile(loss='sparse_categorical_crossentropy',
optimizer=tf.train.AdamOptimizer(),
metrics=['accuracy'])
In [22]:
model.fit(train_images, train_labels, epochs=10)
Out[22]:
In [23]:
test_loss, test_acc = model.evaluate(test_images, test_labels)
In [24]:
print(test_acc)
In [0]:
pred = model.predict(test_images)
In [26]:
pred[0]
Out[26]:
In [28]:
np.argmax(pred[2])
Out[28]:
In [29]:
test_labels[2]
Out[29]:
In [0]:
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
In [32]:
i = 2
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, pred, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, pred, test_labels)
In [34]:
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, pred, test_labels, test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, pred, test_labels)
In [0]: