In [0]:
import tensorflow as tf
from tensorflow import keras

In [0]:
mnist = keras.datasets.fashion_mnist

In [0]:
mnist.load_data()

In [0]:
(train_images,train_labels),(test_images,test_labels) = mnist.load_data()

In [5]:
train_images.shape


Out[5]:
(60000, 28, 28)

In [6]:
test_images.shape


Out[6]:
(10000, 28, 28)

In [0]:
import numpy as np
import matplotlib.pyplot as plt

In [0]:
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

In [11]:
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)



In [12]:
train_images


Out[12]:
array([[[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]],

       [[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]],

       [[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]],

       ...,

       [[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]],

       [[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]],

       [[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)

In [14]:
train_images.data


Out[14]:
<memory at 0x7f811b938138>

In [0]:
train_images = train_images/255.0
test_images = test_images/255.0

In [16]:
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)



In [17]:
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])



In [0]:
model = keras.Sequential([
    
    keras.layers.Flatten(input_shape=(28,28)),
    keras.layers.Dense(128,activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

In [0]:
model.compile(loss='sparse_categorical_crossentropy',
             optimizer=tf.train.AdamOptimizer(),
             metrics=['accuracy'])

In [22]:
model.fit(train_images, train_labels,  epochs=10)


Epoch 1/10
60000/60000 [==============================] - 6s 108us/step - loss: 0.4961 - acc: 0.8265
Epoch 2/10
60000/60000 [==============================] - 5s 78us/step - loss: 0.3731 - acc: 0.8647
Epoch 3/10
60000/60000 [==============================] - 5s 78us/step - loss: 0.3372 - acc: 0.8771
Epoch 4/10
60000/60000 [==============================] - 5s 77us/step - loss: 0.3146 - acc: 0.8862
Epoch 5/10
60000/60000 [==============================] - 5s 76us/step - loss: 0.2949 - acc: 0.8909
Epoch 6/10
60000/60000 [==============================] - 5s 78us/step - loss: 0.2800 - acc: 0.8962
Epoch 7/10
60000/60000 [==============================] - 5s 77us/step - loss: 0.2674 - acc: 0.9008
Epoch 8/10
60000/60000 [==============================] - 5s 78us/step - loss: 0.2566 - acc: 0.9036
Epoch 9/10
60000/60000 [==============================] - 5s 77us/step - loss: 0.2464 - acc: 0.9074
Epoch 10/10
60000/60000 [==============================] - 5s 79us/step - loss: 0.2387 - acc: 0.9119
Out[22]:
<tensorflow.python.keras.callbacks.History at 0x7f8118a6ac50>

In [23]:
test_loss, test_acc = model.evaluate(test_images, test_labels)


10000/10000 [==============================] - 0s 35us/step

In [24]:
print(test_acc)


0.8852

In [0]:
pred = model.predict(test_images)

In [26]:
pred[0]


Out[26]:
array([3.9710821e-07, 1.5823820e-10, 1.9410448e-08, 4.0665621e-10,
       1.2048154e-08, 1.2978223e-03, 9.2292964e-08, 5.7965014e-03,
       4.7191915e-07, 9.9290472e-01], dtype=float32)

In [28]:
np.argmax(pred[2])


Out[28]:
1

In [29]:
test_labels[2]


Out[29]:
1

In [0]:
def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
  
  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'
  
  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array[i], true_label[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1]) 
  predicted_label = np.argmax(predictions_array)
 
  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

In [32]:
i = 2
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, pred, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, pred,  test_labels)



In [34]:
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, pred, test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, pred, test_labels)



In [0]: