In [1]:
# Convolutional Neural Network

# Installing Theano
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

# Installing Tensorflow
# pip install tensorflow

# Installing Keras
# pip install --upgrade keras

# Part 1 - Building the CNN

# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense


Using TensorFlow backend.

In [2]:
# Initialising the CNN
classifier = Sequential()

# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))

# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))

# Step 3 - Flattening
classifier.add(Flatten())

# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))

# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

In [8]:
from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,
                                   shear_range = 0.2,
                                   zoom_range = 0.2,
                                   horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('datas/train_set',
                                                 target_size = (64, 64),
                                                 batch_size = 32,
                                                 class_mode = 'binary')

test_set = test_datagen.flow_from_directory('datas/test_set',
                                            target_size = (64, 64),
                                            batch_size = 32,
                                            class_mode = 'binary')

#classifier.fit_generator(training_set,
 #                        steps_per_epoch = 8000,
 #                        epochs = 20,
#                         validation_data = test_set,
  #                       validation_steps = 2000)


Found 8000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.

In [13]:
#saving the model
model_json = classifier.to_json()
with open("model.json", "w") as json_file:
    json_file.write(model_json)
# serialize weights to HDF5
classifier.save_weights("model.h5")
print("Saved model to disk")


Saved model to disk

In [16]:
from keras.models import model_from_json
import h5py
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
print("Loaded model from disk")
 
# evaluate loaded model on test data


Loaded model from disk

In [36]:
# Part 3 - Making new predictions
import numpy as np
from keras.preprocessing import image
#test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64))
test_image = image.load_img('dataset/tiger.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = loaded_model.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
    prediction = 'dog'
else:
    prediction = 'cat'

In [37]:
print(prediction)


cat

In [ ]: