In [2]:
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
import auswertung as au
In [3]:
au.import_experiment_data('../Daten/2017-05-08-1414-Aufgabe 4')
In [4]:
DruckT1 = au.messungen[0]
p0 = au.messungen[0][0]
V = 10.1
Zeit = au.messungen[1]
print(au.messgroessen)
In [4]:
# calculate the neccesary data
logpdurchp0 = [np.log(elem/p0) for elem in DruckT1]
Sp = [-V*elem*(1/Zeit[i]) for i,elem in enumerate(logpdurchp0)]
In [5]:
# create LaTeX table
tabellendaten = au.pivot_table(au.messungen)
au.Create_Messdaten_tabellen('../Daten/Aufgabe4Tabelle',au.messgroessen, tabellendaten)
In [6]:
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
In [7]:
# render figure
figure = plt.figure()
axis_1 = figure.add_subplot(111)
xlabel_1 = axis_1.set_xlabel(r'Druck [$10^{-5}$ Bar]')
ylabel_1 = axis_1.set_ylabel('S(p) [l/s]')
T1kurve = axis_1.plot(DruckT1, Sp, 'bx', label='S(p)')
plt.legend()
plt.savefig('../Daten/grap_aufgabe4.pdf')
plt.show()
In [8]:
figure = plt.figure()
axis_1= figure.add_subplot(111)
xlabel_1 = axis_1.set_xlabel('ln(Druck)')
ylabel_1 = axis_1.set_ylabel('S(p) [l/s]')
SpLogp = axis_1.plot(np.log10(DruckT1), Sp, color='cyan', marker='x', linestyle ='', label='S(p)')
plt.legend()
plt.savefig('../Daten/grap_aufgabe_ln_4.pdf')
plt.show()
In [9]:
mean_range = np.array([ x for x in zip(Sp,DruckT1) if 1.5 > x[0] > 1])
print(mean_range)
In [10]:
mean_performance = np.mean(au.pivot_table(mean_range)[0])
print(mean_performance)
print('Mean Performance of Pump = '+str(mean_performance*3.6)+' m^3/h')